180 research outputs found

    Intracellular Spatial Localization Regulated by the Microtubule Network

    Get PDF
    The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a “structured cytoplasm”, in contrast to a free and fluid environment

    An Essential Role for Diet in Exercise-Mediated Protection against Dyslipidemia, Inflammation and Atherosclerosis in ApoE-/- Mice

    Get PDF
    Diet and exercise promote cardiovascular health but their relative contributions to atherosclerosis are not fully known. The transition from a sedentary to active lifestyle requires increased caloric intake to achieve energy balance. Using atherosclerosis-prone ApoE-null mice we sought to determine whether the benefits of exercise for arterial disease are dependent on the food source of the additional calories.Mice were fed a high-fat diet (HF) for 4.5 months to initiate atherosclerosis after which time half were continued on HF while the other half were switched to a high protein/fish oil diet (HP). Half of each group underwent voluntary running. Food intake, running distance, body weight, lipids, inflammation markers, and atherosclerotic plaque were quantified. Two-way ANOVA tests were used to assess differences and interactions between groups. Exercised mice ran approximately 6-km per day with no difference between groups. Both groups increased food intake during exercise and there was a significant main effect of exercise F((1,44) = 9.86, p<0.01) without interaction. Diet or exercise produced significant independent effects on body weight (diet: F(1,52) = 6.85, p = 0.012; exercise: F(1,52) = 9.52, p<0.01) with no significant interaction. The combination of HP diet and exercise produced a greater decrease in total cholesterol (F(1, 46) = 7.9, p<0.01) and LDL (F(1, 46) = 7.33, p<0.01) with a large effect on the size of the interaction. HP diet and exercise independently reduced TGL and VLDL (p<0.05 and 0.001 respectively). Interleukin 6 and C-reactive protein were highest in the HF-sedentary group and were significantly reduced by exercise only in this group. Plaque accumulation in the aortic arch, a marker of cardiovascular events was reduced by the HP diet and the effect was significantly potentiated by exercise only in this group resulting in significant plaque regression (F1, 49 = 4.77, p<0.05).In this model exercise is beneficial to combat dyslipidemia and protect from atherosclerosis only when combined with diet

    Construction of Transgenic Plasmodium berghei as a Model for Evaluation of Blood-Stage Vaccine Candidate of Plasmodium falciparum Chimeric Protein 2.9

    Get PDF
    BACKGROUND:The function of the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1-19) expressed by Plasmodium has been demonstrated to be conserved across distantly related Plasmodium species. The green fluorescent protein (GFP) is a reporter protein that has been widely used because it can be easily detected in living organisms by fluorescence microscopy and flow cytometry. METHODOLOGY AND RESULTS:In this study, we used gene targeting to generate transgenic P. berghei (Pb) parasites (designated as PfMSP1-19Pb) that express the MSP1-19 of P. falciparum (Pf) and the GFP reporter protein simultaneously. The replacement of the PbMSP1-19 locus by PfMSP1-19 was verified by PCR and Southern analysis. The expression of the chimeric PbfMSP-1 and the GFP was verified by Western blot and fluorescence microscopy, respectively. Moreover, GFP-expressing transgenic parasites in blood stages can be readily differentiated from other blood cells using flow cytometry. A comparison of growth rates between wild-type and the PfMSP1-19Pb transgenic parasite indicated that the replacement of the MSP1-19 region and the expression of the GFP protein were not deleterious to the transgenic parasites. We used this transgenic mouse parasite as a murine model to evaluate the protective efficacy in vivo of specific IgG elicited by a PfCP-2.9 malaria vaccine that contains the PfMSP1-19. The BALB/c mice passively transferred with purified rabbit IgG to the PfCP-2.9 survived a lethal challenge of the PfMSP1-19Pb transgenic murine parasites, but not the wild-type P. berghei whereas the control mice passively transferred with purified IgG obtained from adjuvant only-immunized rabbits were vulnerable to both transgenic and wild-type infections. CONCLUSIONS:We generated a transgenic P. berghei line that expresses PfMSP1-19 and the GFP reporter gene simultaneously. The availability of this parasite line provides a murine model to evaluate the protective efficacy in vivo of anti-MSP1-19 antibodies, including, potentially, those elicited by the PfCP-2.9 malaria vaccine in human volunteers

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Efficiency of Organelle Capture by Microtubules as a Function of Centrosome Nucleation Capacity: General Theory and the Special Case of Polyspermia

    Get PDF
    Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation

    Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder

    Get PDF
    Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain

    Metabolic Adaptation of Ralstonia solanacearum during Plant Infection: A Methionine Biosynthesis Case Study

    Get PDF
    MetE and MetH are two distinct enzymes that catalyze a similar biochemical reaction during the last step of methionine biosynthesis, MetH being a cobalamin-dependent enzyme whereas MetE activity is cobalamin-independent. In this work, we show that the last step of methionine synthesis in the plant pathogen Ralstonia solanacearum is under the transcriptional control of the master pathogenicity regulator HrpG. This control is exerted essentially on metE expression through the intermediate regulator MetR. Expression of metE is strongly and specifically induced in the presence of plant cells in a hrpG- and metR-dependent manner. metE and metR mutants are not auxotrophic for methionine and not affected for growth inside the plant but produce significantly reduced disease symptoms on tomato whereas disruption of metH has no impact on pathogenicity. The finding that the pathogen preferentially induces metE expression rather than metH in the presence of plant cells is indicative of a probable metabolic adaptation to physiological host conditions since this induction of metE occurs in an environment in which cobalamin, the required co-factor for MetH, is absent. It also shows that MetE and MetH are not functionally redundant and are deployed during specific stages of the bacteria lifecycle, the expression of metE and metH being controlled by multiple and distinct signals

    Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)

    Get PDF
    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain

    FRET Detection of Lymphocyte Function-Associated Antigen-1 Conformational Extension

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1-specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation
    corecore