222 research outputs found

    The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions

    Get PDF
    We report the abundances of a selected set of “lithophile” trace elements (including lanthanides, actinides and high field strength elements) and high-precision oxygen isotope analyses of a comprehensive suite of aubrites. Two distinct groups of aubrites can be distinguished: (a) the main-group aubrites display flat or light-REE depleted REE patterns with variable Eu and Y anomalies; their pyroxenes are light-REE depleted and show marked negative Eu anomalies; (b) the Mount Egerton enstatites and the silicate fraction from Larned display distinctive light-REE enrichments, and high Th/Sm ratios; Mount Egerton pyroxenes have much less pronounced negative Eu anomalies than pyroxenes from the main-group aubrites. Leaching experiments were undertaken to investigate the contribution of sulfides to the whole rock budget of the main-group aubrites. Sulfides contain in most cases at least 50% of the REEs and of the actinides. Among the elements we have analyzed, those displaying the strongest lithophile behaviors are Rb, Ba, Sr and Sc. The homogeneity of the Δ17O values obtained for main-group aubrite falls [Δ17O = +0.009 ± 0.010‰ (2σ)] suggests that they originated from a single parent body whose differentiation involved an early phase of large-scale melting that may have led to the development of a magma ocean. This interpretation is at first glance in agreement with the limited variability of the shapes of the REE patterns of these aubrites. However, the trace element concentrations of their phases cannot be used to discuss this hypothesis, because their igneous trace-element signatures have been modified by subsolidus exchange. Finally, despite similar O isotopic compositions, the marked light-REE enrichments displayed by Mount Egerton and Larned suggest that they are unrelated to the main-group aubrites and probably originated from a distinct parent body

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    A review of spatial causal inference methods for environmental and epidemiological applications

    Get PDF
    The scientific rigor and computational methods of causal inference have had great impacts on many disciplines, but have only recently begun to take hold in spatial applications. Spatial casual inference poses analytic challenges due to complex correlation structures and interference between the treatment at one location and the outcomes at others. In this paper, we review the current literature on spatial causal inference and identify areas of future work. We first discuss methods that exploit spatial structure to account for unmeasured confounding variables. We then discuss causal analysis in the presence of spatial interference including several common assumptions used to reduce the complexity of the interference patterns under consideration. These methods are extended to the spatiotemporal case where we compare and contrast the potential outcomes framework with Granger causality, and to geostatistical analyses involving spatial random fields of treatments and responses. The methods are introduced in the context of observational environmental and epidemiological studies, and are compared using both a simulation study and analysis of the effect of ambient air pollution on COVID-19 mortality rate. Code to implement many of the methods using the popular Bayesian software OpenBUGS is provided

    Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    Get PDF
    Peer reviewe

    Targeting and Vaccine Durability Are Key for Population-level Impact and Cost-Effectiveness of a Pox-Protein HIV Vaccine Regimen in South Africa

    Get PDF
    Background: RV144 is to date the only HIV vaccine trial to demonstrate efficacy, albeit rapidly waning over time. The HVTN 702 trial is currently evaluating in South Africa a similar vaccine formulation to that of RV144 for subtype C HIV with additional boosters (pox-protein regimen). Using a detailed stochastic individual-based network model of disease transmission calibrated to the HIV epidemic, we investigate population-level impact and maximum cost of an HIV vaccine to remain cost-effective. Methods: Consistent with the original pox-protein regimen, we model a primary series of five vaccinations meeting the goal of 50% cumulative efficacy 24 months after the first dose and include twoyearly boosters that maintain durable efficacy over 10 years. We simulate vaccination programs in South Africa starting in 2027 under various vaccine targeting and HIV treatment and prevention assumptions. Results: Our analysis shows that this partially effective vaccine could prevent, at catch-up vaccination with 60% coverage, up to 941,000 (15.6%) new infections between 2027 and 2047 assuming current trends of antiretroviral treatment. An impact of up to 697,000 (11.5%) infections prevented could be achieved by targeting age cohorts of highest incidence. Economic evaluation indicates that, if treatment scale-up was achieved, vaccination could be cost-effective at a total cost of less than 385and385 and 62 per 10- year series (cost-effectiveness thresholds of 5,691and5,691 and 750). Conclusions: While a partially effective, rapidly waning vaccine could help to prevent HIV infections, it will not eliminate HIV as a public health priority in sub-Saharan Africa. Vaccination is expected to be most effective under targeted delivery to age groups of highest HIV incidence. Awaiting results of trial, the introduction of vaccination should go in parallel with continued innovation in HIV prevention, including studies to determine the costs of delivery and feasibility and further research into products with greater efficacy and durability

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore