153 research outputs found
Petunia Floral Defensins with Unique Prodomains as Novel Candidates for Development of Fusarium Wilt Resistance in Transgenic Banana Plants
Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C- terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium–mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector
Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model
Prognostic indices for brain metastases – usefulness and challenges
<p>Abstract</p> <p>Background</p> <p>This review addresses the strengths and weaknesses of 6 different prognostic indices, published since the Radiation Therapy Oncology Group (RTOG) developed and validated the widely used 3-tiered prognostic index known as recursive partitioning analysis (RPA) classes, i.e. between 1997 and 2008. In addition, other analyses of prognostic factors in groups of patients, which typically are underrepresented in large trials or databases, published in the same time period are reviewed.</p> <p>Methods</p> <p>Based on a systematic literature search, studies with more than 20 patients were included. The methods and results of prognostic factor analyses were extracted and compared. The authors discuss why current data suggest a need for a more refined index than RPA.</p> <p>Results</p> <p>So far, none of the indices has been derived from analyses of all potential prognostic factors. The 3 most recently published indices, including the RTOG's graded prognostic assessment (GPA), all expanded from the primary 3-tiered RPA system to a 4-tiered system. The authors' own data confirm the results of the RTOG GPA analysis and support further evaluation of this tool.</p> <p>Conclusion</p> <p>This review provides a basis for further refinement of the current prognostic indices by identifying open questions regarding, e.g., performance of the ideal index, evaluation of new candidate parameters, and separate analyses for different cancer types. Unusual primary tumors and their potential differences in biology or unique treatment approaches are not well represented in large pooled analyses.</p
Glutathione Precursor N-Acetyl-Cysteine Modulates EEG Synchronization in Schizophrenia Patients: A Double-Blind, Randomized, Placebo-Controlled Trial
Glutathione (GSH) dysregulation at the gene, protein, and functional levels has been observed in schizophrenia patients. Together with disease-like anomalies in GSH deficit experimental models, it suggests that such redox dysregulation can play a critical role in altering neural connectivity and synchronization, and thus possibly causing schizophrenia symptoms. To determine whether increased GSH levels would modulate EEG synchronization, N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients in a randomized, double-blind, crossover protocol for 60 days, followed by placebo for another 60 days (or vice versa). We analyzed whole-head topography of the multivariate phase synchronization (MPS) for 128-channel resting-state EEGs that were recorded at the onset, at the point of crossover, and at the end of the protocol. In this proof of concept study, the treatment with NAC significantly increased MPS compared to placebo over the left parieto-temporal, the right temporal, and the bilateral prefrontal regions. These changes were robust both at the group and at the individual level. Although MPS increase was observed in the absence of clinical improvement at a group level, it correlated with individual change estimated by Liddle's disorganization scale. Therefore, significant changes in EEG synchronization induced by NAC administration may precede clinically detectable improvement, highlighting its possible utility as a biomarker of treatment efficacy
Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles
Saliva is a readily accessible and informative biofluid, making it ideal for the early detection of a wide range of diseases including cardiovascular, renal, and autoimmune diseases, viral and bacterial infections and, importantly, cancers. Saliva-based diagnostics, particularly those based on metabolomics technology, are emerging and offer a promising clinical strategy, characterizing the association between salivary analytes and a particular disease. Here, we conducted a comprehensive metabolite analysis of saliva samples obtained from 215 individuals (69 oral, 18 pancreatic and 30 breast cancer patients, 11 periodontal disease patients and 87 healthy controls) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We identified 57 principal metabolites that can be used to accurately predict the probability of being affected by each individual disease. Although small but significant correlations were found between the known patient characteristics and the quantified metabolites, the profiles manifested relatively higher concentrations of most of the metabolites detected in all three cancers in comparison with those in people with periodontal disease and control subjects. This suggests that cancer-specific signatures are embedded in saliva metabolites. Multiple logistic regression models yielded high area under the receiver-operating characteristic curves (AUCs) to discriminate healthy controls from each disease. The AUCs were 0.865 for oral cancer, 0.973 for breast cancer, 0.993 for pancreatic cancer, and 0.969 for periodontal diseases. The accuracy of the models was also high, with cross-validation AUCs of 0.810, 0.881, 0.994, and 0.954, respectively. Quantitative information for these 57 metabolites and their combinations enable us to predict disease susceptibility. These metabolites are promising biomarkers for medical screening
Animal influence on water, sanitation and hygiene measures for zoonosis control at the household level: A systematic literature review
Neglected zoonotic diseases (NZDs) have a significant impact on the livelihoods of the world’s poorest populations, which often lack access to basic services. Water, sanitation and hygiene (WASH) programmes are included among the key strategies for achieving the World Health Organization’s 2020 Roadmap for Implementation for control of Neglected Tropical Diseases (NTDs). There exists a lack of knowledge regarding the effect of animals on the effectiveness of WASH measures. This review looked to identify how animal presence in the household influences the effectiveness of water, hygiene and sanitation measures for zoonotic disease control in low and middle income countries; to identify gaps of knowledge regarding this topic based on the amount and type of studies looking at this particular interaction
Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Meta-analysis.
IMPORTANCE: Risk factors for abdominal aortic aneurysm (AAA) are largely unknown, which has hampered the development of nonsurgical treatments to alter the natural history of disease. OBJECTIVE: To investigate the association between lipid-associated single-nucleotide polymorphisms (SNPs) and AAA risk. DESIGN, SETTING, AND PARTICIPANTS: Genetic risk scores, composed of lipid trait-associated SNPs, were constructed and tested for their association with AAA using conventional (inverse-variance weighted) mendelian randomization (MR) and data from international AAA genome-wide association studies. Sensitivity analyses to account for potential genetic pleiotropy included MR-Egger and weighted median MR, and multivariable MR method was used to test the independent association of lipids with AAA risk. The association between AAA and SNPs in loci that can act as proxies for drug targets was also assessed. Data collection took place between January 9, 2015, and January 4, 2016. Data analysis was conducted between January 4, 2015, and December 31, 2016. EXPOSURES: Genetic elevation of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG). MAIN OUTCOMES AND MEASURES: The association between genetic risk scores of lipid-associated SNPs and AAA risk, as well as the association between SNPs in lipid drug targets (HMGCR, CETP, and PCSK9) and AAA risk. RESULTS: Up to 4914 cases and 48 002 controls were included in our analysis. A 1-SD genetic elevation of LDL-C was associated with increased AAA risk (odds ratio [OR], 1.66; 95% CI, 1.41-1.96; P = 1.1 × 10-9). For HDL-C, a 1-SD increase was associated with reduced AAA risk (OR, 0.67; 95% CI, 0.55-0.82; P = 8.3 × 10-5), whereas a 1-SD increase in triglycerides was associated with increased AAA risk (OR, 1.69; 95% CI, 1.38-2.07; P = 5.2 × 10-7). In multivariable MR analysis and both MR-Egger and weighted median MR methods, the association of each lipid fraction with AAA risk remained largely unchanged. The LDL-C-reducing allele of rs12916 in HMGCR was associated with AAA risk (OR, 0.93; 95% CI, 0.89-0.98; P = .009). The HDL-C-raising allele of rs3764261 in CETP was associated with lower AAA risk (OR, 0.89; 95% CI, 0.85-0.94; P = 3.7 × 10-7). Finally, the LDL-C-lowering allele of rs11206510 in PCSK9 was weakly associated with a lower AAA risk (OR, 0.94; 95% CI, 0.88-1.00; P = .04), but a second independent LDL-C-lowering variant in PCSK9 (rs2479409) was not associated with AAA risk (OR, 0.97; 95% CI, 0.92-1.02; P = .28). CONCLUSIONS AND RELEVANCE: The MR analyses in this study lend support to the hypothesis that lipids play an important role in the etiology of AAA. Analyses of individual genetic variants used as proxies for drug targets support LDL-C lowering as a potential effective treatment strategy for preventing and managing AAA
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …