
Genetic Association of Lipids and Lipid Drug Targets
With Abdominal Aortic Aneurysm
A Meta-analysis
Seamus C. Harrison, PhD, FRCS; Michael V. Holmes, MD, PhD; Stephen Burgess, PhD; Folkert W. Asselbergs, MD, PhD; Gregory T. Jones, PhD;
Annette F. Baas, MD, PhD; F. N. van ’t Hof, MD; Paul I. W. de Bakker, PhD; Jan D. Blankensteijn, MD, PhD; Janet T. Powell, PhD, FRCPath;
Athanasios Saratzis, PhD, MRCS; Gert J. de Borst, MD, PhD; Daniel I. Swerdlow, PhD; Yolanda van der Graaf, MD, PhD; Andre M. van Rij, MD, PhD;
David J. Carey, PhD; James R. Elmore, MD; Gerard Tromp, PhD; Helena Kuivaniemi, MD, PhD; Robert D. Sayers, MD, FRCS;
Nilesh J. Samani, FRCP; Matthew J. Bown, MD, FRCS; Steve E. Humphries, PhD

IMPORTANCE Risk factors for abdominal aortic aneurysm (AAA) are largely unknown, which has
hampered the development of nonsurgical treatments to alter the natural history of disease.

OBJECTIVE To investigate the association between lipid-associated single-nucleotide
polymorphisms (SNPs) and AAA risk.

DESIGN, SETTING, AND PARTICIPANTS Genetic risk scores, composed of lipid trait–associated
SNPs, were constructed and tested for their association with AAA using conventional
(inverse-variance weighted) mendelian randomization (MR) and data from international AAA
genome-wide association studies. Sensitivity analyses to account for potential genetic
pleiotropy included MR-Egger and weighted median MR, and multivariable MR method was
used to test the independent association of lipids with AAA risk. The association between
AAA and SNPs in loci that can act as proxies for drug targets was also assessed. Data
collection took place between January 9, 2015, and January 4, 2016. Data analysis was
conducted between January 4, 2015, and December 31, 2016.

EXPOSURES Genetic elevation of low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and triglycerides (TG).

MAIN OUTCOMES AND MEASURES The association between genetic risk scores of
lipid-associated SNPs and AAA risk, as well as the association between SNPs in lipid drug
targets (HMGCR, CETP, and PCSK9) and AAA risk.

RESULTS Up to 4914 cases and 48 002 controls were included in our analysis. A 1-SD genetic
elevation of LDL-C was associated with increased AAA risk (odds ratio [OR], 1.66; 95% CI,
1.41-1.96; P = 1.1 × 10−9). For HDL-C, a 1-SD increase was associated with reduced AAA risk
(OR, 0.67; 95% CI, 0.55-0.82; P = 8.3 × 10−5), whereas a 1-SD increase in triglycerides was
associated with increased AAA risk (OR, 1.69; 95% CI, 1.38-2.07; P = 5.2 × 10−7). In
multivariable MR analysis and both MR-Egger and weighted median MR methods, the
association of each lipid fraction with AAA risk remained largely unchanged. The
LDL-C–reducing allele of rs12916 in HMGCR was associated with AAA risk (OR, 0.93; 95% CI,
0.89-0.98; P = .009). The HDL-C–raising allele of rs3764261 in CETP was associated with
lower AAA risk (OR, 0.89; 95% CI, 0.85-0.94; P = 3.7 × 10−7). Finally, the LDL-C–lowering
allele of rs11206510 in PCSK9 was weakly associated with a lower AAA risk (OR, 0.94; 95% CI,
0.88-1.00; P = .04), but a second independent LDL-C–lowering variant in PCSK9 (rs2479409)
was not associated with AAA risk (OR, 0.97; 95% CI, 0.92-1.02; P = .28).

CONCLUSIONS AND RELEVANCE The MR analyses in this study lend support to the hypothesis
that lipids play an important role in the etiology of AAA. Analyses of individual genetic
variants used as proxies for drug targets support LDL-C lowering as a potential effective
treatment strategy for preventing and managing AAA.
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A bdominal aortic aneurysm (AAA) is an important car-
diovascular disease (CVD) resulting in approximately
4500 deaths from AAA rupture per year in the United

States.1 Approximately 45 000 operations are carried out each
year to prevent rupture, resulting in 1400 deaths.1 Screening
for AAA reduces the burden of rupture,2 and therefore many
countries now offer such screening to at-risk groups.3,4 The US
Preventive Services Task Force recommends screening men
aged 65 to 75 years with a history of smoking, and the Ameri-
can Heart Association guidelines suggest surgical repair is
needed when the AAA reaches 5.5 cm in diameter.

Abdominal aortic aneurysm shares risk factors with occlu-
sive atherosclerotic disease, but the magnitude and direction
of this association is not always consistent. A growing body
of evidence suggests considerable heterogeneity of risk factor
associations among different forms of CVDs.5-7 For example,
the risk of smoking for AAA is at least 2-fold greater than that
for coronary heart disease (CHD),7 whereas type 2 diabetes ap-
pears to be protective for AAA but is a major risk factor for oc-
clusive vascular disease.6 This example suggests that AAA may
have some distinct causal pathways, and understanding these
pathways is important for setting public health policies aimed
at reducing the risk posed by AAA and its complications.

Genome-wide association studies (GWASs) of AAA have
identified robust associations of loci that have previously been
found for CHD (9p21),8 DAB2IP (Entrez Gene 153090),9 LDLR
(Entrez Gene 3949),10 SORT1 (Entrez Gene 6272),11 and IL6R
(Entrez Gene 3570)12 as well as a number of variants that do
not appear to be associated with other CVDs (LRP1 [Entrez Gene
4035],13 SMYD2 [Entrez Gene 56960], ERG [Entrez Gene 2078],
MMP9 [Entrez Gene 4318], and LINC00540 [Entrez Gene
100506622]14). Again, these findings lend support to the
hypothesis that AAA and CHD have overlapping pathophysi-
ology, but the association with AAA and not with other CVDs
suggests that discrete etiological pathways may well exist
between these vascular diseases.

The role of low-density lipoprotein cholesterol (LDL-C) lev-
els in CHD is well defined, and LDL-C lowering therapies are of
clear benefit in reducing CHD risk.15 Genetic studies appear to
support a causal role for hypertriglyceridemia in CHD,16-18 but
genetic and clinical studies have cast doubt on the status of high-
density lipoprotein cholesterol (HDL-C) as a causal factor in
CHD.16,18-21 In AAA, meta-analyses of observational studies do
show a consistent inverse association of HDL-C with AAA risk,
but the association with LDL-C is less clear.22,23 It is important,
however, to recognize that the studies included in these meta-
analyses were small case-control studies, many of which did not
adjust for statin use. There is a paucity of any data reporting an
association between triglycerides (TG) and AAA risk or progres-
sion. From a clinical point of view, it is important to under-
stand the role of lipids in AAA, especially considering the ex-
cess cardiovascular risks in patients with AAA24 and the recent
publications showing low prevalence of lowering levels of LDL-C
in patients with AAA.25,26 Previous genetic association studies
have pointed to a potential role of lipids in AAA pathology,10,11,27

but this current study uses a larger panel of single-nucleotide
polymorphisms (SNPs), a considerably larger sample, and more
advanced methods.

Mendelian randomization (MR) is an approach that uses
the unique properties of genotype to investigate causal
associations.28 Specifically, genotype is randomly allocated at
conception (owing to Mendel’s second law, a feature that is
exploited to minimize confounding) and is not affected by re-
verse causation. Although MR has traditionally been used to
explore causal associations between circulating biomarkers and
disease phenotypes, it has an extension that uses genotype
to validate drug targets. In this approach, variants in genes en-
coding potential drug targets are used as instruments to ex-
plore the utility of targeting this pathway in specific disease
states.29,30 A major challenge in MR studies of complex traits
such as lipid fractions is genetic pleiotropy, whereby SNPs in-
fluence circulating concentrations of multiple lipid fractions.
This so-called pleiotropy may reflect an association of an SNP
(or multiple SNPs in combination) with multiple discrete path-
ways that may have differing associations with AAA, leading
to a potentially biased estimate from MR. Recent develop-
ments in the technique, such as multivariable MR,16 weighted
median MR,31 and MR-Egger,32 have been used to address these
issues, but pleiotropy still poses a challenge.

In this study, conventional inverse-variance weighted MR,
multivariable MR, weighted median MR, and MR-Egger
approaches were used to investigate the role of lipids in the
etiology of AAA.

Methods
From January 9, 2015, to December 21, 2016, we investigated
the association of genetic risk scores (GRS) for lipid traits with
AAA reported in up to 4914 cases and 48 002 controls across
5 international AAA GWASs14 that took place in the United King-
dom and Australia,13,14 New Zealand,13,14 the United States,14

the Netherlands, and Iceland.9 The GRS were composed of SNPs
that are robustly associated with serum lipids in the Global
Lipids Genetics Consortium meta-GWAS of circulating lipid
levels.33 Data collection for this study took place between Janu-
ary 9, 2015, and January 4, 2016. Data analysis was con-
ducted between January 4, 2015, and December 31, 2016.

Study Populations
We used summary SNP-AAA association statistics from the 5
published GWASs of AAA. Detailed descriptions of these GWAS

Key Points
Question What is the association between genetically elevated
lipid levels and the risk for abdominal aortic aneurysm?

Findings In this meta-analysis of up to 4914 cases and 48 002
controls in 5 genome-wide association studies, genetic elevation
of low-density lipoprotein cholesterol and triglyceride levels were
associated with an elevated risk of abdominal aortic aneurysm and
high-density lipoprotein cholesterol level was associated with a
lower risk of abdominal aortic aneurysm.

Meaning Patients with abdominal aortic aneurysm have a high
burden of genetically determined dyslipidemia; targeting lipids in
this high-risk group may improve longer-term outcomes.
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analyses are provided in the eAppendix in the Supplement and
previous publications.9,13,14 We supplemented the study of
single variants in genes encoding lipid drug targets with data
derived from the Secondary Manifestations of Arterial Dis-
eases (SMART) study. The Table includes the number of cases
and controls in each study. Descriptions of study cohorts and
demographic details are presented in the eAppendix in the
Supplement and previous publications.9,13,14 In all studies, the
case definition of AAA was an infrarenal aortic diameter of 3
cm or more by ultrasound or computed tomographic imaging
or previous AAA rupture or repair. Details of the association
tests and quality control used in each study are included in the
eAppendix in the Supplement and a published meta-GWAS.14

Selection of SNPs
We identified SNPs associated with lipids in the Global Lipid Ge-
netics Consortium33 using the SNP selection criteria by Do et al.16

Briefly, SNPs in association with at least 1 of the 3 lipid traits
(LDL-C, HDL-C, or TG concentrations) at a genome-wide sig-
nificance level (P < 5 × 10−8) were selected. In Do et al16 at loci
with multiple associated SNPs, single SNPs with the strongest
effect estimates were selected, and more than 1 SNP was se-
lected only if there was evidence of minimal linkage disequi-
librium (r2 < 0.05). Data were available for the 180 of 185 SNPs
(eTable 1 in the Supplement) described in Do et al.16

Data Analysis
We first harmonized SNPs across the data sets (Global Lipids
Genetics Consortium and Aneurysm Consortium) by merging
SNPs on the reference SNP cluster identification or rs number.
Then, we ensured that effect alleles were denoted to be the same
in both data sets and double-checked the information by inves-
tigating effect-allele frequencies. We oriented all variants to en-
sure that the effect allele was positively associated with each
lipid trait (eg, in the MR of LDL-C, all β coefficients for LDL-C
were >0). This orientation resulted in a data set in which each
SNP was a unique row and there were separate columns for β
and SEs for each lipid trait and the log odds ratio (OR) and cor-
responding SE for AAA (eTable 1 in the Supplement).

Conventional MR
We conducted a conventional 2-sample MR analysis to deter-
mine the association between a 1-SD genetically elevated lipid
concentration and AAA risk. For this analysis, we used the

inverse-variance weighted MR method in which the SNP as-
sociation estimates for the outcome (β for AAA) are regressed
on the SNP association estimates for each lipid (β for LDL-C,
β for HDL-C, and β for TG) individually in turn. The regres-
sion was weighted by the inverse variances of the estimated
associations of the SNPs with the outcome and then was forced
to pass through the origin.

Multivariable MR
To gauge some insight into potential “independent” associa-
tions of the lipids with AAA risk, we used the multivariable MR
method. In this approach, a single regression model with out-
come variable (β for AAA) was fitted for the predictor vari-
ables (β for LDL-C, β for HDL-C, and β for TG). The model was
implemented, as described previously,34 as a multilinear re-
gression of SNP association estimates weighted by the
inverse variances of the estimated associations of SNPs with
the outcome and forced to pass through the origin.

MR-Egger
We used the MR-Egger32 method that tests for the presence of,
and provides an MR estimate that is adjusted for, unmeasured
net pleiotropy. The method involves conducting an uncon-
strained linear regression of the SNP association estimates
for the outcome on the SNP association estimates for the expo-
sure weighted by the inverse variance of the estimated asso-
ciation of SNP with outcome. In MR-Egger, any net pleiotropy
manifests in the intercept. Under the assumption that pleiotro-
pic associations are independent of the associations of the SNPs
with the exposure, the regression slope coefficient should
represent an unbiased MR association estimate.

Weighted Median MR
As a further sensitivity analysis, we performed the weighted
median MR method.31 Whereas the conventional inverse-
variance weighted method calculates a weighted mean of the
SNP-specific causal association estimates, the weighted me-
dian method calculates a weighted version of the median of
the SNP-specific causal association estimates. Because the
median of a distribution is not affected by extreme values, the
weighted median method is less sensitive to individual pleio-
tropic SNPs. The weighted median estimate is unbiased in large
samples if at least 50% of the weights from SNPs are valid (eg,
not pleiotropic).

Table. Summary of Abdominal Aortic Aneurysm Genome-Wide Association Studies

GWAS Data Set Cases, No. Controls, No. Notes
Aneurysm Consortium (United Kingdom and Australia)a 1866 5435 WTCCC Common Control Group, nonscreened

Vascular Genetics Study (New Zealand)a 1005 996 Screened AAA-negative controls (<2.5 cm); 80% AAA >5 cm

GWAS (United States)a 724 1870 Cases identified in electronic health records, nonscreened

deCODE Genetics (Iceland)a 479 36 910 Nonscreened population

GWAS (the Netherlands)a 840 2791 Nonscreened population

SMARTb 631 6342 AAA-negative controls with arterial diseasec

Abbreviations: AAA, abdominal aortic aneurysm; GWAS, genome-wide
association study; NA, not applicable; SMART, Secondary Manifestations of
Arterial Diseases study; WTCCC, Wellcome Trust Case Control Consortium.
a This cohort was used in the mendelian randomization of lipids (genetic risk

score) analysis.

b This cohort was used in the mendelian randomization of drug targets analysis.
c Reflecting a single variant study only.
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SNPs in Drug Target Analysis
To our knowledge, there have been no large-scale random-
ized trials of lipid-lowering treatments in patients with AAA,
and observational studies have often been small and retro-
spective and yielded heterogeneous results. We examined the
association of rs12916 in HMGCR (a genetic proxy for statins;
Entrez Gene 3156), rs3764261 in CETP (a proxy for CETP
inhibitors; Entrez Gene 1071), as well as rs2479409 and
rs11206510 in PCSK9 (a proxy for PCSK9 inhibitors; Entrez
Gene 255738) with AAA to identify the potential utility of
pharmacological modification of these drug targets in AAA.

Statistical Calculations
The MR analyses for blood lipids were performed using the
“MendelianRandomization” command in R, version 3.3.3
(R Foundation for Statistical Computing),35 and 2-tailed
P values were derived from instrumental variable estimators.
Given that there was only one outcome under investigation
(AAA) and the lipids traits were correlated with one another,
we used 2-tailed P < .05 to denote evidence against the null
hypothesis (ie, P < .05 provided evidence in favor of an
association between the exposure and outcome).

Results
The numbers of cases and controls for each of the 5 AAA GWASs
are shown in the Table. Up to 4914 cases and 48 002 controls
were included in our analysis. The complete list of SNPs ana-
lyzed in this study, together with information on the associa-
tion statistics for AAA, and for LDL-C, HDL-C, and TG levels,
is included in eTable 1 in the Supplement.

Conventional Inverse-Variance Weighted MR:
Association of GRS With AAA
Summary statistics for 180 lipid-associated SNPs were available
for analysis. As previously reported,11,14 the LDL-C–lowering
alleles of rs6511720 in LDLR (OR per allele, 0.75; 95% CI, 0.67-

0.83; P = 5.2 × 10−12) and rs646776 in SORT1 (OR per allele, 0.88;
95% CI, 0.82-0.94; P = 3.9 × 10−8) were strongly associated
with AAA. No other SNP from the 180 lipid-associated SNPs was
individually associated with AAA at conventional levels of
genome-wide significance (P < 5.0 × 10−8). Twenty-five of 180
SNPs (13.8%) were nominally associated with AAA (P < .05;
eTable 2 in the Supplement) with 9 such associations (95% CI,
4-15) being expected by chance alone.

We conducted conventional inverse-variance weighted MR
analyses using GRS for LDL-C (75 SNPs), HDL-C (84 SNPs), and
TG levels (50 SNPs) to assess the associations with AAA
(Figure 1). The LDL-GRS was strongly associated with AAA risk
(OR per SD higher level for LDL-C, 1.66; 95% CI, 1.41-1.96;
P = 1.1 × 10−9). A 1-SD higher HDL-C level instrumented through
the HDL-C GRS was associated with a reduced AAA risk
(OR, 0.67; 95% CI, 0.55-0.82; P = 8.3 × 10−5). In addition, the
TG-GRS was associated with higher AAA risk (OR per 1-SD
higher TG level, 1.69; 95% CI, 1.38-2.07; P = 5.2 × 10−7).

Multivariable MR, MR-Egger,
and Weighted Median MR Approaches
It is possible to remove SNPs with pleiotropic associations from
the GRS, but this removal diminishes the strength of the in-
strumental variable36 and can introduce bias.37 Therefore, we
adopted the multivariable MR method described by Do et al16

and modified by Burgess and Thompson34 to gain insight into
the potential independent associations of these lipid GRS with
AAA risk. To account for any net unbalanced pleiotropy, we
used the MR-Egger method. To reduce the influence of outly-
ing (possibly pleiotropic) variants on the analysis, we used the
weighted median MR method. None of these sensitivity MR
analyses resulted in a material change to either the magni-
tude or significance of the estimates (Figure 1). The point es-
timates for concentrations of LDL-C and HDL-C remained
largely unaltered, whereas for TG the point estimate dimin-
ished for the multivariable MR method; however, on the
MR-Egger and weighted median MR methods, TG level
remained convincingly associated with AAA.

Figure 1. Association of Lipid Genetic Risk Scores With Abdominal Aortic Aneurysm (AAA) Risk

P Value

Favors Higher
Concentration

of Lipid

Favors Lower
Concentration
of Lipid

3.01.00.2
OR (95% CI)

MR Method
LDL-C

OR of AAA per SD
Higher Lipid Level
(95% CI)

1.1 × 10–9Inverse-variance weighted 1.66 (1.41-1.96)
8.4 × 10–7MR-Egger 1.94 (1.49-2.52)
1.3 × 10–5Weighted median 1.68 (1.33-2.12)
1.8 × 10–8Multivariable 1.56 (1.34-1.82)

HDL-C
8.3 × 10–5Inverse-variance weighted 0.67 (0.55-0.82)
6.0 × 10–4MR-Egger 0.56 (0.41-0.78)

.02Weighted median 0.74 (0.58-0.95)
2.0 × 10–3Multivariable 0.73 (0.60-0.89)

TG
5.2 × 10–7Inverse-variance weighted 1.69 (1.38-2.07)
2.0 × 10–3MR-Egger 1.71 (1.21-2.40)
9.8 × 10–5Weighted median 1.68 (1.29-2.19)

.10Multivariable 1.21 (0.96-1.51)

The 4 different mendelian
randomization (MR) methods used to
determine this association were
conventional inverse weighted MR,
MR-Egger, weighted median MR, and
multivariable MR. LDL-C indicates
low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein
cholesterol; OR, odds ratio; and
TG, triglycerides (TG).
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Association of SNPs With Lipid Drug Targets
We selected rs12916 in HMGCR, rs3764261 in CETP, as well as
rs2479409 and rs11206510 in PCSK9 as there are licensed drugs
that target pathways associated with these genes.

The LDL-C–lowering allele of rs12916 (to proxy statin use)
was associated with a lower AAA risk in meta-analysis (OR per
LDL-C–lowering allele, 0.93; 95% CI, 0.89-0.98; P = .009)
(Figure 2).

The PCSK9 inhibitors are a novel class of drugs used to
target LDL-C. To date, in CHD, genetic and clinical studies have
had concordant results.33,38 We examined 2 independent
SNPs in PCSK9 (rs2479409 and rs11206510; linkage disequi-
librium r2 = 0.07) that were used as proxies for PCSK9 inhibi-
tion in a large-scale MR analysis39 and have strong, indepen-
dent associations with both LDL-C levels and CHD. The
LDL-C–lowering allele of rs2479409 was not associated
with AAA risk (OR, 0.97; 95% CI, 0.92-1.02; P = .28). The
LDL-C–lowering allele of rs11206510 in PCSK9 was weakly
associated with AAA risk (OR, 0.94; 95% CI, 0.88-1.00; P = .04)
(Figure 2).

We used rs3764261 as a proxy for CETP inhibition.
Although the allele increases HDL-C levels, it is also associ-
ated with lower circulating concentrations of TG and LDL-C;
thus, rs3764261 cannot be considered as an instrument for
HDL-C in isolation but can be used to gauge insight into the
potential associations with CETP inhibition.30 This HDL-
raising CETP SNP was associated with lower AAA risk (OR per
HDL-C–raising allele, 0.89; 95% CI, 0.85-0.94; P = 3.7 × 10−7).

Discussion
Understanding the relevance of lipid fractions in the develop-
ment of AAA has important implications from both etiologi-
cal and translational standpoints. In this study, we used MR
to provide robust evidence that the major lipid fractions—
LDL-C, HDL-C, and TG—are likely to play important roles in the
etiology of AAA. A similar genetic approach has been used
previously,27 but this present study has expanded on this tech-
nique by including many more individuals and more SNPs and
by using more recent developments in MR, which collec-

tively increase statistical power and strengthen the validity of
the association estimates reported here.

Disentangling the roles of correlated biomarkers in disease
etiology continues to be an analytical challenge; to this end, we
used recently developed techniques for the multivariable MR
method.16 Interestingly, there appear to be independent asso-
ciations between genetically instrumented levels of LDL-C,
HDL-C, and TG and AAA risk. This finding is in contrast to find-
ings in studies of CHD in which a similar approach found weaker
associations between HDL-C genetic variants and CHD (after
shared pathways with LDL-C and TG and pleiotropy had been
taken into account16,18,19,36) or aortic stenosis in which only
LDL-C appeared to play a causal role.40 This finding highlights
the complexity of lipid pathways across the diverse biology of
CVD and suggests that results from studies focused solely on
CHD (which can be defined variably) cannot always be extrapo-
lated to other vascular diseases such as AAA.

Although it has been possible to investigate for pleiotro-
pic associations of genetic variants used collectively in the lipid
GRS employed in the MR analyses we conducted, it is not so
straightforward as to disentangle the phenotypic overlap
whereby many patients with AAA also harbor atherosclerotic
disease in other vascular beds. Therefore, it is tempting to sug-
gest a causal role for lipids specifically in AAA pathogenesis,
but these genetic analyses do not provide definitive evi-
dence. The data do suggest, however, that the burden of ge-
netically influenced dyslipidemia in patients with AAA is con-
siderable, and by extrapolation, these MR analyses lend support
to the lipids playing an important role in AAA etiology and thus
targeting lipids through pharmacological modification in pa-
tients with small AAAs may well be justified. This point is par-
ticularly pertinent given the recent reports of low prevalence
of control of LDL-C concentrations in patients with AAA in both
the United States and the United Kingdom.25,26 In addition, this
group of patients should be considered in trials evaluating novel
treatments of lipid-lowering medications, such as CETP or
PCSK9 inhibitors.

The use of genetic data to inform drug trials and/or drug
repurposing represents an important translational facet of data
derived by large genome-wide consortia.41,42 In addition to the
GRS for LDL-C, HDL-C, and TG, we looked at 4 loci that serve

Figure 2. Association of Single-Nucleotide Polymorphisms (SNPs) in Genes Encoding Drug Targets With Abdominal Aortic Aneurysm (AAA) Risk

Favors
LDL-C

Lowering

Favors
LDL-C
Raising

2.01.00.8
OR (95% CI)

SNP No. of Cases No. of Controls
HMGCR gene (LDL-C−lowering effect allele)

OR of AAA per
Allele (95% CI)

rs12916 4914 48 002 0.93 (0.89-0.98)
PCSK9 gene (LDL-C−lowering effect allele)

rs2479409 4914 48 002 0.97 (0.92-1.02)
rs11206510 4914 48 002 0.94 (0.88-1.00)

CETP gene (HDL-C−raising and LDL-C lowering effect allele)
rs3764261 5545 54 344 0.89 (0.85-0.94)

SNPs were proxies for lipid drug targets. Analysis of CETP gene included additional cases and controls from the Secondary Manifestations of Arterial Diseases
(SMART) study. LDL-C indicates low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; and OR, odds ratio.
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as proxies for cardiovascular drug targets that have not been
subjected to clinical trials in patients with AAA. Both the LDL-C
GRS and a genetic proxy for statin therapy (SNPs in HMGCR)
were associated with AAA. Previous investigations on the as-
sociations of concentrations of LDL-C with AAA have used
cross-sectional data sets with varying findings, and results have
been hampered by concurrent LDL-C–lowering therapies.43

Indeed, there has been a suggestion that statin use may in-
crease AAA risk.44 The collective results from this study sug-
gest that LDL-C plays an important role in the etiology of AAA,
which may explain the excess burden of CVD in patients with
AAA.24 These data also support a view that patients found by
screening to have AAA should be prescribed statins to reduce
their CVD risk, although whether this will affect the progres-
sion of AAA cannot be answered in this study.

A recent phase 3 clinical trial showed that PCSK9 inhibi-
tors have beneficial effects on CVD outcomes.38 Although the
association we found between PCSK9 variants and AAA was
weak, if PSCK9 inhibitors do prove to be a safe and cost-
effective means of lowering LDL-C levels, then consideration
should be given to evaluating these drugs in patients with AAA.

As noted, a genetically instrumented higher HDL-C level was
identified to be associated with a reduction in AAA risk. Vari-
ants in CETP have a range of results similar to pharmacological
inhibition of CETP,30 including lowering of LDL-C and raising
of HDL-C levels. A trial of CETP inhibition showed modest ben-
efit in patients following myocardial infarction,45 and there are
data to support its beneficial effects on vascular remodeling46

that could have relevance in AAA management. Evaluation of
CETP inhibition in patients with AAA may therefore be war-
ranted. Although we cannot specifically determine whether the
association between CETP polymorphisms and AAA is via
HDL-C, LDL-C, or TG (or indeed all, as suggested by our GRS of
lipid traits), we believe our results suggest that CETP inhibi-
tion could play a role in the management of AAA.

The findings regarding TG variants also have potential clini-
cal implications for the development of novel treatments aimed
at TG levels. They suggest that patients with AAA may ben-
efit from lowering TG levels. As novel therapies such as APOC3
inhibitors progress from phase 2 studies to larger-scale phase
3 studies of CVD prevention, then patients with AAA could be
an important CVD subphenotype in whom treatment should
be evaluated.

Our study used MR, a genetic approach that has impor-
tant assumptions. The SNPs used in the genetic instruments

for each lipid trait were identified from recent GWASs that
placed stringent thresholds on SNP discovery. As such, the ge-
netic instruments are very unlikely to suffer from weak in-
strument bias; in any case, because the MR analyses used
nonoverlapping data sets, such bias would tend to dilute the
estimates derived from MR analyses.47 In addition, we made
the assumption that the genetic instruments are not influ-
enced by confounding and that they only associate with AAA
through the exposure of interest (ie, the genetic instruments
are not affected by unbalanced horizontal pleiotropy, as pic-
torially illustrated in Figure 1 of White et al18 and expanded in
Holmes et al37). These assumptions cannot be tested with com-
plete certainty. However, causal estimates obtained from a
range of sensitivity analyses, each making different and weaker
assumptions, all gave similar results. Nonetheless, residual
pleiotropy could still influence our findings.

Limitations
The limitations of this study should be considered. First, we
did not have data sets to evaluate AAA progression. Second,
owing to limited availability of covariate data, we were
unable to examine the influence of concurrent lipid-lowering
therapy on the estimates derived from the GRS for blood lipid
traits and AAA risk. Third, our analyses used summary-level
data as described elsewhere.16,48 Use of summary-level data
can hamper more refined analyses (eg, subgroup analyses by
sex or age), but one of its main strengths is it facilitates
2-sample MR analyses of the type reported here. This greatly
strengthens the power of the study, which enables the con-
duct of sensitivity analyses (such as MR-Egger and weighted
median MR methods) and the investigation of certain instru-
mental variable assumptions such as the absence of genetic
pleiotropy. Finally, although we attempted to control for
pleiotropy in the analyses, we believe pleiotropy still repre-
sents a major challenge to deciphering the roles of specific
lipid-based pathways.

Conclusions
Using contemporary MR approaches, we found data that lend
support to the hypothesis that major lipid fractions are in-
volved in the etiology of AAA. Consideration should be given
to measures aimed at targeting lipids to reduce risk of AAA,
using established and emerging therapies.
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