93 research outputs found

    Applicability of perturbative QCD to ΛbΛc\Lambda_b \to \Lambda_c decays

    Full text link
    We develop perturbative QCD factorization theorem for the semileptonic heavy baryon decay ΛbΛclνˉ\Lambda_b \to \Lambda_c l\bar{\nu}, whose form factors are expressed as the convolutions of hard bb quark decay amplitudes with universal Λb\Lambda_b and Λc\Lambda_c baryon wave functions. Large logarithmic corrections are organized to all orders by the Sudakov resummation, which renders perturbative expansions more reliable. It is observed that perturbative QCD is applicable to ΛbΛc\Lambda_b \to \Lambda_c decays for velocity transfer greater than 1.2. Under requirement of heavy quark symmetry, we predict the branching ratio B(ΛbΛclνˉ)2B(\Lambda_b \to \Lambda_c l{\bar\nu})\sim 2%, and determine the Λb\Lambda_b and Λc\Lambda_c baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results are changed, but the conclusion is the sam

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Acanthocephalan Fauna of Marine Fish in Taiwan and the Differentiation of Three Species by Ribosomal DNA Sequences

    No full text
    本研究從三種海魚腸道中分?與鑑別出三種屬於棘頭蟲動物門之蠕蟲,分別為?自烏魚之活動新棘吻蟲、臭肚魚之巨棘新長棘吻蟲以及澳洲鯖(俗稱花腹鯖)之鋸長棘吻蟲。三種棘頭蟲皆為發現地點新紀?。同時以光學顯微術和掃描式電子顯微術解析此三種棘頭蟲之型態特徵,此外亦以分子生物技術區別三者遺傳上之差?。藉由聚合??鎖反應增幅其ITS-1、5.8S 以及ITS-2 基因片段,獲得之產物長??同而足以清楚區別,其長?分別為:活動新棘吻蟲450 bp、巨棘新長棘吻蟲800 bp 以及鋸長棘吻蟲600 bp。Three Acanthocephala species were recovered and identified from three species of fish host. They are Neoechinorhynchus agilis collected from grey mullet, (Mugil cephalus), Neorhadinorhynchus macrospinosus from rabbit fish (Siganus fuscescens), and Rhadinorhynchus pristis from spotted mackerel (Scomber australasicus). All are new locality records. Scanning electron microscopy and light microscopy were used to describe the morphological characters. In addition, these three acanthocephalans were characterized genetically using a molecular approach. The nuclear ribosomal DNA region spanning the first internal transcribed spacer (ITS-1), the 5.8S gene and the second internal transcribed spacer (ITS-2) was amplified and the sizes of PCR products derived were different in length. They are 450 bp for N. agilis, 800 bp for N. macrospinosus, and 600 bp for R. pristis

    Sensitive and Simple Flow Injection Analysis of Formaldehyde Using an Activated Barrel Plating Nickel Electrode

    No full text
    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)iO(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 mu g/mL formaldehyde was observed, and the LOD of 0.23 mu g/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 mu g/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample

    Determination of codeine in urine and drug formulations using a clay-modified screen-printed carbon electrode

    No full text
    Both flow-injection analysis and square-wave stripping voltammetry were evaluated for the determination of codeine in pharmaceutical formulations using a nontronite clay-modified screen-printed carbon electrode. Compared with a bare screen-printed carbon electrode, the nontronite clay-modified screen-printed carbon electrode exhibited a marked enhancement of the current response of codeine. A linear calibration plot was obtained over the 2.5-45 muM range (correlation coefficient = 0.999) in pH 6.0 phosphate buffer solution with a detection limit of 20 nM (S/N= 3) by square-wave voltammetry (SWV). While, in flow-injection analysis, the linearity was over 5-120 ng range with a detection limit of 1 ng in 20 mul loop. The nontronite clay-modified screen-printed carbon electrode can be either disposable or reused since the renewal gave a good reproducible surface. Quantitative analysis was performed by the standard addition method for codeine content in both urine and commercially available drugs. (C) 2002 Elsevier Science B.V. All rights reserved

    Selective Determination of Arbutin in Cosmetic Products Through Online Derivatization Followed by Disposable Electrochemical Sensor

    No full text
    An online derivatization followed by a disposable electrochemical sensor was used for the determination of arbutin (AR) in cosmetic products. The AR was chemically oxidized by MnO(2) and subsequently reduced at inexpensive screen-printed carbon electrodes using a low detection potential which improved the selectivity of the method. The effects of various parameters, such as solution pH, detection potential, and flow rate of the mobile phase, were studied in detail. Under optimal conditions [pH 1.6 (0.1 M H(3)PO(4)), detection potential 0.0 V (versus Ag/AgCl), flow rate 0.6 mL/min] the linear range for AR was 0.1-1500 ppm (r(2) = 0.999) with LOD of 30.06 ppb (S/N = 3). The practical application of the proposed method was demonstrated by the determination of arbutin concentration in commercial cosmetic products
    corecore