19 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Insect pests affecting potatoes in tropical, subtropical, and temperate regions.

    No full text
    Ensuring the sustainable production of potato is an important challenge facing agriculture globally. Insect pests are major biotic constraints affecting potato yields and tuber quality. The high pesticide uses to control them is of high human and environmental health concern, and it is expected that this will be further exacerbated through impacts of climate change. The chapter provides an overview of the geographical distribution of potato insect pests and their importance in tropical, subtropical, and temperate potato production regions. Climate change will potentially contribute to expand their geographical range of distribution, and increasing populations will lead to greater crop and post-harvest losses. Good progress has been made in applying insect pest modeling in pest risk analysis of potato pests to inform and create better awareness of future pest risks under climate change. Potato pests include some of the species which have evolved resistance to a wide variety of chemicals; and potato growers have already experienced the situation that available chemicals failed to control their targets. This chapter emphasizes the development, use, and adaptation of Integrated Pest Management (IPM) across all potato-growing regions of the world. Ultimately, this will lead to sustainable and more resilient potato production systems not overly dependent on pesticides. IPM requires a good knowledge and understanding of individual potato production systems; identifying pest species, knowing their biology and symptoms of infestation is essential for making educated decisions on their integrated management. To address this need, the chapter provides detailed information for a total of 49 insect pests of potato and the status quo of their management around the world
    corecore