309 research outputs found

    Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

    Full text link
    Under appropriate conditions, superconducting electronic circuits behave quantum mechanically, with properties that can be designed and controlled at will. We have realized an experiment in which a superconducting two-level system, playing the role of an artificial atom, is strongly coupled to a single photon stored in an on-chip cavity. We show that the atom-photon coupling in this circuit can be made strong enough for coherent effects to dominate over dissipation, even in a solid state environment. This new regime of matter light interaction in a circuit can be exploited for quantum information processing and quantum communication. It may also lead to new approaches for single photon generation and detection.Comment: 8 pages, 4 figures, accepted for publication in Nature, embargo does apply, version with high resolution figures available at: http://www.eng.yale.edu/rslab/Andreas/content/science/PubsPapers.htm

    Resolving photon number states in a superconducting circuit

    Full text link
    Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting qubit to signals on a microwave transmission line, it is possible to construct an integrated circuit where the presence or absence of even a single photon can have a dramatic effect. This system is called circuit quantum electrodynamics (QED) because it is the circuit equivalent of the atom-photon interaction in cavity QED. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit can absorb and re-emit a single photon many times. Here, we report a circuit QED experiment which achieves the strong dispersive limit, a new regime of cavity QED in which a single photon has a large effect on the qubit or atom without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability to find the corresponding photon number in the cavity. This effect has been used to distinguish between coherent and thermal fields and could be used to create a photon statistics analyzer. Since no photons are absorbed by this process, one should be able to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    Subtropical grass pollen allergens are important for allergic respiratory diseases in subtropical regions

    Get PDF
    Background: Grass pollen allergens are a major cause of allergic respiratory disease but traditionally prescribing practice for grass pollen allergen-specific immunotherapy has favoured pollen extracts of temperate grasses. Here we aim to compare allergy to subtropical and temperate grass pollens in patients with allergic rhinitis from a subtropical region of Australia. Methods. Sensitization to pollen extracts of the subtropical Bahia grass (Paspalum notatum), Johnson grass (Sorghum halepense) and Bermuda grass (Cynodon dactylon) as well as the temperate Ryegrass (Lolium perenne) were measured by skin prick in 233 subjects from Brisbane. Grass pollen-specific IgE reactivity was tested by ELISA and cross-inhibition ELISA. Results: Patients with grass pollen allergy from a subtropical region showed higher skin prick diameters with subtropical Bahia grass and Bermuda grass pollens than with Johnson grass and Ryegrass pollens. IgE reactivity was higher with pollen of Bahia grass than Bermuda grass, Johnson grass and Ryegrass. Patients showed asymmetric cross-inhibition of IgE reactivity with subtropical grass pollens that was not blocked by temperate grass pollen allergens indicating the presence of species-specific IgE binding sites of subtropical grass pollen allergens that are not represented in temperate grass pollens. Conclusions: Subtropical grass pollens are more important allergen sources than temperate grass pollens for patients from a subtropical region. Targeting allergen-specific immunotherapy to subtropical grass pollen allergens in patients with allergic rhinitis in subtropical regions could improve treatment efficacy thereby reducing the burden of allergic rhinitis and asthma

    Commercial hospitality in destination experiences: McDonald's and tourists' consumption of space

    Get PDF
    This paper examines the multiple roles that globalised, branded spaces of hospitality can play in tourists' experiences in destinations. It is argued that previous studies have not considered adequately how such commercial hospitality services and spaces interact with and influence tourists' experiences of places. Drawing on a netnographic analysis of online discussions of McDonald's, this study explores how tourists perceive these hospitality venues, and how they use them to engage with foreign destinations and negotiate the ‘work of tourism’. The data show how tourists (re)construct their identities through reflections on consuming McDonald's. The data also demonstrate that tourists critically evaluate discourses of authenticity and the (in)authenticity of consuming McDonald's. The paper concludes by discussing the implications for the marketing and management of McDonald's and similar branded commercial hospitality venues, the marketing and management of destinations, and it outlines avenues for further research

    Conceptualising technology enhanced destination experiences

    Get PDF
    The notion of creating rich and memorable experiences for consumers constitutes a prevalent concept in the tourism industry. With the proliferation of destination choices and increasing competition, it has become critical for destinations to find innovative ways to differentiate their products and create experiences that provide distinct value for the tourist. However, currently two major paradigm shifts are drastically changing the nature of experiences, the understanding of which is crucial for destinations to create successful experiences in the future. Experiences are transforming as (a) consumers now play an active part in co-creating their own experiences and (b) technology is increasingly mediating experiences. Despite the amount of literature recognising the impact of technology on experiences, a holistic conceptualisation of this change is missing. This paper thus raises the need to conflate the two-fold paradigm shift and calls for new reflections on the creation of experiences. The aim is to explore technology as a source of innovation to co-create enhanced destination experiences. The paper contributes on three levels: by introducing and conceptualising a new experience creation paradigm entitled Technology Enhanced Destination Experiences, by proposing an extended destination experience co-creation space in the pre/during/post phases of travel and by discussing managerial implications of this development for the future creation and management of experiences in a destination context. © 2012 Elsevier Ltd

    Inhibition of Dehydration-Induced Water Intake by Glucocorticoids Is Associated with Activation of Hypothalamic Natriuretic Peptide Receptor-A in Rat

    Get PDF
    Atrial natriuretic peptide (ANP) provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A), is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP) content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR) mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of water intake and revealed that the glucocorticoids can act centrally, as well as peripherally, to assist in the normalization of extracellular fluid volume

    Conceptualizing the sensory dimension of tourist experiences

    Get PDF
    This paper aims to contribute to the conceptualization of the sensory dimension of tourist experiences by discussing its theoretical underpinnings. A multidisciplinary approach to the human senses shows their importance to the individual’s experience and perception of the surrounding world, recommending the appropriateness of a holistic analysis of sensescapes in tourism. A review of empirical studies conducted under the experiential paradigm of tourism on the five human senses (sight, hearing, smell, taste, and touch) evinces the use of both qualitative and quantitative methodologies, which depends on research purposes, but also the practical implications of findings and data analysis to destination marketing and management. The paper discusses the role of the senses in designing tourist experiences, and identifies important topics regarding the study of the sensory dimension of tourist experiences, considering future research opportunities

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life
    corecore