1,068 research outputs found

    Writing Sample

    Get PDF
    Includes hole in the wall, a souvenir of hell, and rabin’s dead

    Fatso

    Get PDF

    Fatso

    Full text link

    The F2\mathbb{F}_2-Rank and Size of Graphs

    Full text link
    We consider the extremal family of graphs of order 2n2^n in which no two vertices have identical neighbourhoods, yet the adjacency matrix has rank only nn over the field of two elements. A previous result from algebraic geometry shows that such graphs exist for all even nn and do not exist for odd nn. In this paper we provide a new combinatorial proof for this result, offering greater insight to the structure of graphs with these properties. We introduce a new graph product closely related to the Kronecker product, followed by a construction for such graphs for any even nn. Moreover, we show that this is an infinite family of strongly-regular quasi-random graphs whose signed adjacency matrices are symmetric Hadamard matrices. Conversely, we provide a combinatorial proof that for all odd nn, no twin-free graphs of minimal F2\mathbb{F}_2-rank exist, and that the next best-possible rank (n+1)(n+1) is attainable, which is tight.Comment: Added comparison to the results of Godsil and Royle. We thank Sam Adriaensen for bringing them to our attentio

    3D Room Visualization on Android Based Mobile Device (with Philips™\u27 Surround Sound Music Player)

    Full text link
    This project\u27s specifically purposed as a demo application, so anyone can get the experience of a surround audio room without having to physically involved to it, with a main idea of generating a 3D surround sound room scenery coupled with surround sound in a handier package, namely, a “Virtual Listen Room”. Virtual Listen Room set a foundation of an innovative visualization that later will be developed and released as one of way of portable advertisement. This application was built inside of Android environment. Android device had been chosen as the implementation target, since it leaves massive development spaces and mostly contains essential components needed on this project, including graphic processor unit (GPU). Graphic manipulation can be done using an embedded programming interface called OpenGL ES, which is planted in all Android devices generally. Further, Android has a Accelerometer Sensor that is needed to be coupled with scene to produce a dynamic movement of the camera. Surround sound effect can be reached with a decoder from Phillips called MPEG Surround Sound Decoder. To sum the whole project, we got an application with sensor-dynamic 3D room visualization coupled with Philips\u27 Surround Sound Music Player. We can manipulate several room\u27s properties; Subwoofer location, Room light, and how many speakers inside it, the application itself works well despite facing several performance problems before, later to be solved.

    Self-assembled fibre optoelectronics with discrete translational symmetry

    Get PDF
    Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼10⁴ self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (DMR-1419807)United States. Army Research Office. Institute for Soldier Nanotechnologies (contract number W911NF-13-D-0001)United States. Air Force Medical Servic

    Client-contractor bargaining on net present value in project scheduling with limited resources

    Get PDF
    The client-contractor bargaining problem addressed here is in the context of a multi-mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity-on-Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two-party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights

    Electrostrictive microelectromechanical fibres and textiles

    Get PDF
    Microelectromechanical systems (MEMS) enable many modern-day technologies, including actuators, motion sensors, drug delivery systems, projection displays, etc. Currently, MEMS fabrication techniques are primarily based on silicon micromachining processes, resulting in rigid and low aspect ratio structures. In this study, we report on the discovery of MEMS functionality in fibres, thereby opening a path towards flexible, high-Aspect ratio, and textile MEMS. The method used for generating these MEMS fibres leverages a preform-To-fibre thermal drawing process, in which the MEMS architecture and materials are embedded into a preform and drawn into kilometers of microstructured multimaterial fibre devices. The fibre MEMS functionality is enabled by an electrostrictive P(VDF-TrFE-CFE) ferrorelaxor terpolymer layer running the entire length of the fibre. Several modes of operation are investigated, including thickness-mode actuation with over 8% strain at 25 MV m -1 , bending-mode actuation due to asymmetric positioning of the electrostrictive layer, and resonant fibre vibration modes tunable under AC-driving conditions.National Science Foundation (U.S.) (Award DMR-1419807)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001

    Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery

    Get PDF
    Nanoparticles are poised to have a tremendous impact on the treatment of many diseases, but their broad application is limited because currently they can only be administered by parenteral methods. Oral administration of nanoparticles is preferred but remains a challenge because transport across the intestinal epithelium is limited. We show that nanoparticles targeted to the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers, are efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7%*hour compared with only 1.2%*hour for nontargeted nanoparticles. In addition, targeted nanoparticles containing insulin as a model nanoparticle-based therapy for diabetes were orally administered at a clinically relevant insulin dose of 1.1 U/kg and elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in FcRn knockout mice, indicating that the enhanced nanoparticle transport was specifically due to FcRn. FcRn-targeted nanoparticles may have a major impact on the treatment of many diseases by enabling drugs currently limited by low bioavailability to be efficiently delivered though oral administration.Prostate Cancer Foundation (Award in Nanotherapeutics)National Cancer Institute (U.S.) (Center for Cancer Nanotechnology Excellence U54-CA151884)National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology Award Contract HHSN268201000045C)National Institutes of Health (U.S.) (Grant EB000244)National Institutes of Health (U.S.) (R01 Grant EB015419-01)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipNational Cancer Institute (U.S.) (Center for Cancer Nanotechnology Excellence Graduate Research Fellowship 5 U54 CA151884-02

    A novel dimethylformamide (DMF) free bar-cast method to deposit organolead perovskite thin films with improved stability

    Get PDF
    We report a solvent-free approach to synthesizing organolead perovskites by using solid state reactions to coat perovskite crystals onto Al2O3 or TiO2 nanoparticles followed by addition of terpineol affording perovskite inks. We have bar cast these inks to produce photoactive perovskite thin films which are significantly more stable to humidity than solution-processed films. This new method also avoids the use of toxic DMF solvent
    corecore