37 research outputs found

    High-pitch versus conventional cardiovascular CT in patients being assessed for transcatheter aortic valve implantation: A real-world appraisal

    Get PDF
    Objective High-pitch protocols are increasingly used in cardiovascular CT assessment for transcatheter aortic valve implantation (TAVI), but the impact on diagnostic image quality is not known. Methods We reviewed 95 consecutive TAVI studies: 44 (46%) high-pitch and 51 (54%) standard-pitch. Single high-pitch scans were performed regardless of heart rate. For standard-pitch acquisitions, a separate CT-aortogram and CT-coronary angiogram were performed with prospective gating, unless heart rate was ≥70 beats/min, when retrospective gating was used. The aortic root and coronary arteries were assessed for artefact (significant artefact=1; artefact not limiting diagnosis=2; no artefact=3). Aortic scans were considered diagnostic if the score was > 1; the coronaries, if all three epicardial arteries scored > 1. Results There was no significant difference in diagnostic image quality for either the aorta (artefact-free high-pitch: 31 (73%) scans vs standard-pitch: 40 (79%), p=0.340) or the coronary tree as a whole (10 (23%) vs 15 (29%), p=0.493). However, proximal coronary arteries were less well visualised using high-pitch acquisitions (16 (36%) vs 30 (59%), p=0.04). The median (IQR) radiation dose was significantly lower in the high-pitch cohort (dose-length product: 347 (318-476) vs 1227 (1150-1474) mGy cm, respectively, p < 0.001), and the protocol required almost half the amount of contrast. Conclusions The high-pitch protocol significantly reduces radiation and contrast doses and is non-inferior to standard-pitch acquisitions for aortic assessment. For aortic root assessment, the high-pitch protocol is recommended. However, if coronary assessment is critical, this should be followed by a conventional standard-pitch, low-dose, prospectively gated CT-coronary angiogram if the high-pitch scan is non-diagnostic

    Screening for proximal coronary artery anomalies with 3-dimensional MR coronary angiography

    Get PDF
    Under 35 years of age, 14% of sudden cardiac death in athletes is caused by a coronary artery anomaly (CAA). Free-breathing 3-dimensional magnetic resonance coronary angiography (3D-MRCA) has the potential to screen for CAA in athletes and non-athletes as an addition to a clinical cardiac MRI protocol. A 360 healthy men and women (207 athletes and 153 non-athletes) aged 18–60 years (mean age 31 ± 11 years, 37% women) underwent standard cardiac MRI with an additional 3D-MRCA within a maximum of 10 min scan time. The 3D-MRCA was screened for CAA. A 335 (93%) subjects had a technically satisfactory 3D-MRCA of which 4 (1%) showed a malignant variant of the right coronary artery (RCA) origin running between the aorta and the pulmonary trunk. Additional findings included three subjects with ventral rotation of the RCA with kinking and possible proximal stenosis, one person with additional stenosis and six persons with proximal myocardial bridging of the left anterior descending coronary artery. Coronary CT-angiography (CTA) was offered to persons with CAA (the CAA was confirmed in three, while one person declined CTA) and stenosis (the ventral rotation of the RCA was confirmed in two but without stenosis, while two people declined CTA). Overall 3D MRCA quality was better in athletes due to lower heart rates resulting in longer end-diastolic resting periods. This also enabled faster scan sequences. A 3D-MRCA can be used as part of the standard cardiac MRI protocol to screen young competitive athletes and non-athletes for anomalous proximal coronary arteries

    Linear and Branched Glyco-Lipopeptide Vaccines Follow Distinct Cross-Presentation Pathways and Generate Different Magnitudes of Antitumor Immunity

    Get PDF
    Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined.We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005).These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Conformational analysis of neuropeptide Y-[18-36] analogs in hydrophobic environments.

    No full text
    The interactive and conformational behavior of a series of neuropeptide Y-[18-36] (NPY-[18-36]) analogs in hydrophobic environments have been investigated using reversed-phase high-performance liquid chromatography (RP-HPLC) and circular dichroism (CD) spectroscopy. The peptides studied comprised a series of 16 analogs of NPY-[18-36], each containing a single D-amino acid substitution. The influence of these single L-->D substitutions on the alpha-helical conformation of the NPY-[18-36] analogs in different solvent environments was determined by CD spectroscopy. Retention parameters related to the hydrophobic contact area and the affinity of interaction were determined with an n-octadecyl (C18) adsorbent. Structural transitions for all peptides were manifested as significant changes in the hydrophobic binding domain and surface affinity between 4 degrees C and 37 degrees C. The results indicated that the central region of NPY-[18-36] (residues 23-33) is important for maintenance of the alpha-helical conformation. Moreover, L-->D amino acid residue substitutions within the N- and C-terminal regions, as well as Asn29 and Leu30, do not appear to affect the secondary structure of the peptide. These studies demonstrate that RP-HPLC provides a powerful adjunct for investigations into the induction of stabilized secondary structure in peptides upon their interaction with hydrophobic surfaces

    Non-canonical anchor motif peptides bound to MHC class I induce cellular responses

    No full text
    The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which results in the initiation of a T cell dependent immune response. An understanding of how peptides bind to MHC molecules is important for determining the structural basis for T cell dependent immune responses and facilitates the structure-based design of peptides as candidate vaccines to elicit a specific immune response. To date, crystal structures, immunogenicity and in vivo biological relevance have mainly been characterized for high affinity peptide-MHC interactions. From the crystal structures of numerous peptide-MHC complexes it became apparent what canonical sequence features were required for high affinity binding, which led to the ability to predict in most instances peptides with high affinity for MHC. We previously identified the crystal structures of non-canonical peptides in complex with MHC class I (one bound with low affinity and the other with high affinity, but utilizing novel peptide anchors and MHC pockets). It is becoming increasingly evident that other non-canonical peptides can also bind, such as long-, short- and glyco-peptides. However, the in vivo role of non-canonical peptides is not clear and we present here the immunogenicity of two non-canonical peptides and their affinity when bound to MHC class I, H2Kb. Comparison of the three-dimensional structures in complex with MHC suggests major differences in hydrogen bonding patterns with H2Kb, despite sharing similar binding modes, which may account for the differences in affinity and immunogenicity. These studies provide further evidence for the diverse range of peptide ligands that can bind to MHC and be recognized by the TCR, which will facilitate approaches to peptide-based vaccine design. © 2008 Elsevier Ltd. All rights reserved

    Anatomy and Complications Following Laparoscopic Sleeve Gastrectomy: Radiological Evaluation and Imaging Pitfalls

    No full text
    To evaluate the post-operative gastric anatomy depicted by upper gastrointestinal gastrografin swallow studies (UGI) and report radiological work-up and management of complications following laparoscopic sleeve gastrectomy (LSG). The study included 85 consecutive patients who underwent LSG for the treatment of morbid obesity. In all patients, a UGI was routinely performed on POD 3 to exclude early complications. In patients with suspected complications, further radiological evaluation with computed tomography (CT) was performed. The anatomy of the gastric remnant depicted by UGI was retrospectively evaluated in all patients. The patterns of the gastric remnant identified were the tubular (65.9%), the superior pouch (25.9%), and the inferior pouch pattern (8.2%). Three patients had small superior pouches that resembled leaks, and the diagnosis was based on clinical symptoms. Post-operative complications were observed in 12.9% and included leaks (3.5%), hemorrhages (3.5%), strictures (2.3%), pulmonary embolism (1.2%), trocar site hernia (1.2%), and hematoma of the rectus abdominal muscle (1.2%). No mortality was noted. Post-operative radiological evaluation by UGI and CT is important for diagnosis and management of complications following LSG. Familiarity with the anatomy of the gastric remnant at UGI is essential for correct image interpretation
    corecore