225 research outputs found

    Quantification of Trace-Level DNA by Real-Time Whole Genome Amplification

    Get PDF
    Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, −2.1%, and −13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    VKORC1 Common Variation and Bone Mineral Density in the Third National Health and Nutrition Examination Survey

    Get PDF
    Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in 7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1 SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the few reports available that investigate the genetics of BMD and osteoporosis in diverse populations

    Common Variants in a Novel Gene, FONG on Chromosome 2q33.1 Confer Risk of Osteoporosis in Japanese

    Get PDF
    Osteoporosis is a common disease characterized by low bone mass, decreased bone quality and increased predisposition to fracture. Genetic factors have been implicated in its etiology; however, the specific genes related to susceptibility to osteoporosis are not entirely known. To detect susceptibility genes for osteoporosis, we conducted a genome-wide association study in Japanese using ∼270,000 SNPs in 1,747 subjects (190 cases and 1,557 controls) followed by multiple levels of replication of the association using a total of ∼5,000 subjects (2,092 cases and 3,114 controls). Through these staged association studies followed by resequencing and linkage disequilibrium mapping, we identified a single nucleotide polymorphism (SNP), rs7605378 associated with osteoporosis. (combined P = 1.51×10−8, odds ratio = 1.25). This SNP is in a previously unknown gene on chromosome 2q33.1, FONG. FONG is predicted to encode a 147 amino-acid protein with a formiminotransferase domain in its N-terminal (FTCD_N domain) and is ubiquitously expressed in various tissues including bone. Our findings would give a new insight into osteoporosis etiology and pathogenesis

    miRNA-Mediated Functional Changes through Co-Regulating Function Related Genes

    Get PDF
    BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation

    Toxoplasmosis-associated IRIS involving the CNS: a case report with longitudinal analysis of T cell subsets

    Get PDF
    Background: HIV-infected patients may present an unforeseen clinical worsening after initiating antiretroviral therapy known as immune reconstitution inflammatory syndrome (IRIS). This syndrome is characterized by a heightened inflammatory response toward infectious or non-infectious triggers, and it may affect different organs. Diagnosis of IRIS involving the central nervous system (CNS-IRIS) is challenging due to heterogeneous manifestations, absence of biomarkers to identify this condition, risk of long-term sequelae and high mortality. Hence, a deeper knowledge of CNS-IRIS pathogenesis is needed. Case presentation: A 37-year-old man was diagnosed with AIDS and cerebral toxoplasmosis. Anti-toxoplasma treatment was initiated immediately, followed by active antiretroviral therapy (HAART) 1 month later. At 2 months of HAART, he presented with progressive hyposensitivity of the right lower limb associated with brain and dorsal spinal cord lesions, compatible with paradoxical toxoplasmosis-associated CNS-IRIS, a condition with very few reported cases. A stereotactic biopsy was planned but was postponed based on its inherent risks. Patient showed clinical improvement with no requirement of corticosteroid therapy. Routine laboratorial analysis was complemented with longitudinal evaluation of blood T cell subsets at 0, 1, 2, 3 and 6 months upon HAART initiation. A control group composed by 9 HIV-infected patients from the same hospital but with no IRIS was analysed for comparison. The CNS-IRIS patient showed lower percentage of memory CD4(+) T cells and higher percentage of activated CD4(+) T cells at HAART initiation. The percentage of memory CD4(+) T cells drastically increased at 1 month after HAART initiation and became higher in comparison to the control group until clinical recovery onset; the percentage of memory CD8(+) T cells was consistently lower throughout follow-up. Interestingly, the percentage of regulatory T cells (Treg) on the CNS-IRIS patient reached a minimum around 1 month before symptoms onset. Conclusion: Although both stereotactic biopsies and steroid therapy might be of use in CNS-IRIS cases and should be considered for these patients, they might be unnecessary to achieve clinical improvement as shown in this case. Immunological characterization of more CNS-IRIS cases is essential to shed some light on the pathogenesis of this condition.Portuguese Foundation for Science and Technology (FCT; PIC/IC/83313/2007) and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN) through the European Regional Development Fund (FEDER). A FCT fellowship was attributed to RRS (PD/BD/106047/2015; Inter-University Doctoral Program in Ageing and Chronic Disease) and to CN [SFRH/BPD/65380/2009; Programa Operacional Potencial Humano (POPH) through the Fundo Social Europeu (FSE)]info:eu-repo/semantics/publishedVersio

    Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish

    Get PDF
    During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds

    Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes

    Get PDF
    P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. In this study, the fully sequenced genomes of 26 eukaryotes, including animals, plants, fungi and unicellular eukaryotes, were analyzed for P-type ATPases. We report the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. We have classified these proteins according to the conventions of the functional and phylogenetic IUBMB-approved transporter classification system (www.tcdb.org, Saier et al. in Nucleic Acids Res 34:181–186, 2006; Nucleic Acids Res 37:274–278, 2009)
    corecore