940 research outputs found

    Naphthoquinones and Anthraquinones from Scent Glands of a Dyspnoid Harvestman, Paranemastoma quadripunctatum

    Get PDF
    Extracts of Paranemastoma quadripunctatum (Opiliones, Dyspnoi, Nemastomatidae) contained seven components, all of which likely originated from the secretion of well-developed prosomal scent glands. The two main components (together accounting for more than 90% of the secretion) were identified as 1,4-naphthoquinone and 6-methyl-1,4-naphthoquinone. The minor components were 1,4-naphthalenediol, two methoxy-naphthoquinones (2-methoxy-1,4-naphthoquinone, and 2-methoxy-6-methyl-1,4-naphthoquinone) and two anthraquinones (2-methyl-9,10-anthraquinone and a dimethyl-9,10-anthraquinone). While some chemical data on scent gland secretions of the other suborders of Opiliones (Cyphophthalmi, palpatorean Eupnoi, and Laniatores) already exist, this is the first report on the scent gland chemistry in the Dyspnoi. Naphthoquinones are known scent gland exudates of Cyphophthalmi and certain Eupnoi, methoxy-naphthoquinones and anthraquinones are new for opilionid scent gland secretions

    A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SLC19A3 (solute carrier family 19, member 3) is a thiamin transporter with 12 transmembrane domains. Homozygous or compound heterozygous mutations in <it>SLC19A3 </it>cause two distinct clinical phenotypes, biotin-responsive basal ganglia disease and Wernicke's-like encephalopathy. Biotin and/or thiamin are effective therapies for both diseases.</p> <p>Methods</p> <p>We conducted on the detailed clinical, brain MRI and molecular genetic analysis of four Japanese patients in a Japanese pedigree who presented with epileptic spasms in early infancy, severe psychomotor retardation, and characteristic brain MRI findings of progressive brain atrophy and bilateral thalami and basal ganglia lesions.</p> <p>Results</p> <p>Genome-wide linkage analysis revealed a disease locus at chromosome 2q35-37, which enabled identification of the causative mutation in the gene <it>SLC19A3</it>. A pathogenic homozygous mutation (c.958G > C, [p.E320Q]) in <it>SLC19A3 </it>was identified in all four patients and their parents were heterozygous for the mutation. Administration of a high dose of biotin for one year improved neither the neurological symptoms nor the brain MRI findings in one patient.</p> <p>Conclusion</p> <p>Our cases broaden the phenotypic spectrum of disorders associated with <it>SLC19A3 </it>mutations and highlight the potential benefit of biotin and/or thiamin treatments and the need to assess the clinical efficacy of these treatments.</p

    Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis on serum samples was reported to be able to detect colorectal cancer (CRC) from normal or control patients. We carried out a validation study of a SELDI-TOF MS approach with IMAC surface sample processing to identify CRC.</p> <p>Methods</p> <p>A retrospective cohort of 338 serum samples including 154 CRCs, 67 control cancers and 117 non-cancerous conditions was profiled using SELDI-TOF-MS.</p> <p>Results</p> <p>No CRC "specific" classifier was found. However, a classifier consisting of two protein peaks separates cancer from non-cancerous conditions with high accuracy.</p> <p>Conclusion</p> <p>In this study, the SELDI-TOF-MS-based protein expression profiling approach did not perform to identify CRC. However, this technique is promising in distinguishing patients with cancer from a non-cancerous population; it may be useful for monitoring recurrence of CRC after treatment.</p

    Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells

    Get PDF
    Background Treatment options for metastatic renal cell carcinoma (RCC) are limited due to resistance to chemo- and radiotherapy. The development of small-molecule multikinase inhibitors have now opened novel treatment options. The influence of the receptor tyrosine kinase inhibitor AEE788, applied alone or combined with the mammalian target of rapamycin (mTOR) inhibitor RAD001, on RCC cell adhesion and proliferation in vitro has been evaluated. Methods RCC cell lines Caki-1, KTC-26 or A498 were treated with various concentrations of RAD001 or AEE788 and tumor cell proliferation, tumor cell adhesion to vascular endothelial cells or to immobilized extracellular matrix proteins (laminin, collagen, fibronectin) evaluated. The anti-tumoral potential of RAD001 combined with AEE788 was also investigated. Both, asynchronous and synchronized cell cultures were used to subsequently analyze drug induced cell cycle manipulation. Analysis of cell cycle regulating proteins was done by western blotting. Results RAD001 or AEE788 reduced adhesion of RCC cell lines to vascular endothelium and diminished RCC cell binding to immobilized laminin or collagen. Both drugs blocked RCC cell growth, impaired cell cycle progression and altered the expression level of the cell cycle regulating proteins cdk2, cdk4, cyclin D1, cyclin E and p27. The combination of AEE788 and RAD001 resulted in more pronounced RCC growth inhibition, greater rates of G0/G1 cells and lower rates of S-phase cells than either agent alone. Cell cycle proteins were much more strongly altered when both drugs were used in combination than with single drug application. The synergistic effects were observed in an asynchronous cell culture model, but were more pronounced in synchronous RCC cell cultures. Conclusions Potent anti-tumoral activitites of the multikinase inhibitors AEE788 or RAD001 have been demonstrated. Most importantly, the simultaneous use of both AEE788 and RAD001 offered a distinct combinatorial benefit and thus may provide a therapeutic advantage over either agent employed as a monotherapy for RCC treatment

    Syndecans Reside in Sphingomyelin-Enriched Low-Density Fractions of the Plasma Membrane Isolated from a Parathyroid Cell Line

    Get PDF
    BACKGROUND: Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction. METHODOLOGY/PRINCIPAL FINDINGS: Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [(35)S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([(35)S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [(35)S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30-33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase. CONCLUSIONS/SIGNIFICANCE: Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms

    An autosomal recessive leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa maps to chromosome 17q24.2-25.3

    Get PDF
    Background Single-gene disorders related to ischemic stroke seem to be an important cause of stroke in young patients without known risk factors. To identify new genes responsible of such diseases, we studied a consanguineous Moroccan family with three affected individuals displaying hereditary leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa that appears to segregate in autosomal recessive pattern. Methods All family members underwent neurological and radiological examinations. A genome wide search was conducted in this family using the ABI PRISM linkage mapping set version 2.5 from Applied Biosystems. Six candidate genes within the region linked to the disease were screened for mutations by direct sequencing. Results Evidence of linkage was obtained on chromosome 17q24.2-25.3. Analysis of recombination events and LOD score calculation suggests linkage of the responsible gene in a genetic interval of 11 Mb located between D17S789 and D17S1806 with a maximal multipoint LOD score of 2.90. Sequencing of seven candidate genes in this locus, ATP5H, FDXR, SLC25A19, MCT8, CYGB, KCNJ16 and GRIN2C, identified three missense mutations in the FDXR gene which were also found in a homozygous state in three healthy controls, suggesting that these variants are not disease-causing mutations in the family. Conclusion A novel locus for leucoencephalopathy with ischemic stroke, dysmorphic syndrome and retinitis pigmentosa has been mapped to chromosome 17q24.2-25.3 in a consanguineous Moroccan family

    Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury

    Get PDF
    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the “toxin receptor mediated cell knockout” method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3–7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore