92 research outputs found
Separability of Black Holes in String Theory
We analyze the origin of separability for rotating black holes in string
theory, considering both massless and massive geodesic equations as well as the
corresponding wave equations. We construct a conformal Killing-Stackel tensor
for a general class of black holes with four independent charges, then identify
two-charge configurations where enhancement to an exact Killing-Stackel tensor
is possible. We show that further enhancement to a conserved Killing-Yano
tensor is possible only for the special case of Kerr-Newman black holes. We
construct natural null congruences for all these black holes and use the
results to show that only the Kerr-Newman black holes are algebraically special
in the sense of Petrov. Modifying the asymptotic behavior by the subtraction
procedure that induces an exact SL(2)^2 also preserves only the conformal
Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black
hole possesses a conformal Killing-Stackel tensor but has no further
enhancements.Comment: 27 page
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
Kerr/CFT, dipole theories and nonrelativistic CFTs
We study solutions of type IIB supergravity which are SL(2,R) x SU(2) x
U(1)^2 invariant deformations of AdS_3 x S^3 x K3 and take the form of products
of self-dual spacelike warped AdS_3 and a deformed three-sphere. One of these
backgrounds has been recently argued to be relevant for a derivation of
Kerr/CFT from string theory, whereas the remaining ones are holographic duals
of two-dimensional dipole theories and their S-duals. We show that each of
these backgrounds is holographically dual to a deformation of the DLCQ of the
D1-D5 CFT by a specific supersymmetric (1,2) operator, which we write down
explicitly in terms of twist operators at the free orbifold point. The
deforming operator is argued to be exactly marginal with respect to the
zero-dimensional nonrelativistic conformal (or Schroedinger) group - which is
simply SL(2,R)_L x U(1)_R. Moreover, in the supergravity limit of large N and
strong coupling, no other single-trace operators are turned on. We thus propose
that the field theory duals to the backgrounds of interest are nonrelativistic
CFTs defined by adding the single Schroedinger-invariant (1,2) operator
mentioned above to the original CFT action. Our analysis indicates that the
rotating extremal black holes we study are best thought of as finite
right-moving temperature (non-supersymmetric) states in the above-defined
supersymmetric nonrelativistic CFT and hints towards a more general connection
between Kerr/CFT and two-dimensional non-relativistic CFTs.Comment: 48+8 pages, 4 figures; minor corrections and references adde
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between and times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
- …