We analyze the origin of separability for rotating black holes in string
theory, considering both massless and massive geodesic equations as well as the
corresponding wave equations. We construct a conformal Killing-Stackel tensor
for a general class of black holes with four independent charges, then identify
two-charge configurations where enhancement to an exact Killing-Stackel tensor
is possible. We show that further enhancement to a conserved Killing-Yano
tensor is possible only for the special case of Kerr-Newman black holes. We
construct natural null congruences for all these black holes and use the
results to show that only the Kerr-Newman black holes are algebraically special
in the sense of Petrov. Modifying the asymptotic behavior by the subtraction
procedure that induces an exact SL(2)^2 also preserves only the conformal
Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black
hole possesses a conformal Killing-Stackel tensor but has no further
enhancements.Comment: 27 page