20 research outputs found

    Targeting the epigenome: effects of epigenetic treatment strategies on genomic stability in healthy human cells

    Get PDF
    Epigenetic treatment concepts have long been ascribed as being tumour-selective. Over the last decade, it has become evident that epigenetic mechanisms are essential for a wide range of intracellular functions in healthy cells as well. Evaluation of possible side-effects and their underlying mechanisms in healthy human cells is necessary in order to improve not only patient safety, but also to support future drug development. Since epigenetic regulation directly interacts with genomic and chromosomal packaging density, increasing genomic instability may be a result subsequent to drug-induced epigenetic modifications. This review highlights past and current research efforts on the influence of epigenetic modification on genomic stability in healthy human cells

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32)

    Full text link
    T-cell prolymphocytic leukemia (T-PLL) is a rare aggressive lymphoma derived from mature T cells, which is, in most cases, characterized by the presence of an inv(14)(q11q32)/t(14;14)(q11;q32) and a characteristic pattern of secondary chromosomal aberrations. DNA microarray technology was employed to compare the transcriptomes of eight immunomagnetically purified CD3+ normal donor-derived peripheral blood cell samples, with five highly purified inv(14)/t(14;14)-positive T-PLL blood samples. Between the two experimental groups, 734 genes were identified as differentially expressed, including functionally important genes involved in lymphomagenesis, cell cycle regulation, apoptosis and DNA repair. Notably, the differentially expressed genes were found to be significantly enriched in genomic regions affected by recurrent chromosomal imbalances. Upregulated genes clustered on chromosome arms 6p and 8q, and downregulated genes on 6q, 8p, 10p, 11q and 18p. High-resolution copy-number determination using single nucleotide polymorphism chip technology in 12 inv(14)/t(14;14)-positive T-PLL including those analyzed for gene expression, refined chromosomal breakpoints as well as regions of imbalances. In conclusion, combined transcriptional and molecular cytogenetic profiling identified novel specific chromosomal loci and genes that are likely to be involved in disease progression and suggests a gene dosage effect as a pathogenic mechanism in T-PLL
    corecore