110 research outputs found
Regulation of cytokine signaling through direct interaction between cytokine receptors and the ATG16L1 WD40 domain
ATG16L1, an autophagy mediator that specifies the site of LC3 lipidation, includes a C-terminal domain formed by 7 WD40-type repeats (WD40 domain, WDD), the function of which is unclear. Here we show that the WDD interacts with the intracellular domain of cytokine receptors to regulate their signaling output in response to ligand stimulation. Using a refined version of a previously described WDD-binding amino acid motif, here we show that this element is present in the intracellular domain of cytokine receptors. Two of these receptors, IL-10RB and IL-2Rγ, recognize the WDD through the motif and exhibit WDD-dependent LC3 lipidation activity. IL-10 promotes IL-10RB/ATG16L1 interaction through the WDD, and IL-10 signaling is suboptimal in cells lacking the WDD owing to delayed endocytosis and inefficient early trafficking of IL10/IL-10R complexes. Our data reveal WDD-dependent roles of ATG16L1 in the regulation of cytokine receptor trafficking and signaling, and provide a WDD-binding motif that might be used to identify additional WDD activators
Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study
Background: To facilitate population screening and clinical trials of disease-modifying therapies for Alzheimer’s
disease, supportive biomarker information is necessary. This study was aimed to investigate the association of
plasma amyloid-beta (Aβ) levels with the presence of pathological accumulation of Aβ in the brain measured by
amyloid-PET. Both plasma Aβ42/40 ratio alone or combined with an FDG-PET-based biomarker of
neurodegeneration were assessed as potential AD biomarkers.
Methods: We included 39 cognitively normal subjects and 20 patients with mild cognitive impairment from the
AB255 Study who had undergone PiB-PET scans. Total Aβ40 and Aβ42 levels in plasma (TP42/40) were quantified
using ABtest kits. Subjects were dichotomized as Aβ-PET positive or negative, and the ability of TP42/40 to detect
Aβ-PET positivity was assessed by logistic regression and receiver operating characteristic analyses. Combination of
plasma Aβ biomarkers and FDG-PET was further assessed as an improvement for brain amyloidosis detection and
diagnosis classification.
Results: Eighteen (30.5%) subjects were Aβ-PET positive. TP42/40 ratio alone identified Aβ-PET status with an area
under the curve (AUC) of 0.881 (95% confidence interval [CI] = 0.779–0.982). Discriminating performance of TP42/40
to detect Aβ-PET-positive subjects yielded sensitivity and specificity values at Youden’s cutoff of 77.8% and 87.5%,
respectively, with a positive predictive value of 0.732 and negative predictive value of 0.900. All these parameters
improved after adjusting the model for significant covariates. Applying TP42/40 as the first screening tool in a
sequential diagnostic work-up would reduce the number of Aβ-PET scans by 64%. Combination of both FDG-PET
scores and plasma Aβ biomarkers was found to be the most accurate Aβ-PET predictor, with an AUC of 0.965 (95%
CI = 0.913–0.100).
Conclusions: Plasma TP42/40 ratio showed a relevant and significant potential as a screening tool to identify brain
Aβ positivity in preclinical and prodromal stages of Alzheimer’s disease
Evaluating the extent and impact of the extreme Storm Gloria on Posidonia oceanica seagrass meadows
Extreme storms can trigger abrupt and often lasting changes in ecosystems by affecting foundational (habitat-forming) species. While the frequency and intensity of extreme events are projected to increase under climate change, its impacts on seagrass ecosystems remain poorly documented. In January 2020, the Spanish Mediterranean coast was hit by Storm Gloria, one of the most devastating recent climate events in terms of intensity and duration. We conducted rapid surveys of 42 Posidonia oceanica meadows across the region to evaluate the extent and type of impact (burial, unburial and uprooting). We investigated the significance of oceanographic (wave impact model), geomorphological (latitude, depth, exposure), and structural (patchiness) factors in predicting impact extent and intensity. The predominant impact of Storm Gloria was shoot unburial. More than half of the surveyed sites revealed recent unburial, with up to 40 cm of sediment removed, affecting over 50 % of the meadow. Burial, although less extensive, was still significant, with 10–80 % of meadow cover being buried under 7 cm of sediment, which is considered a survival threshold for P. oceanica. In addition, we observed evident signs of recently dead matte in some meadows and large amounts of detached drifting shoots on the sea bottom or accumulated as debris on the beaches. Crucially, exposed and patchy meadows were much more vulnerable to the overall impact than sheltered or continuous meadows. Given how slow P. oceanica is able to recover after disturbances, we state that it could take from decades to centuries for it to recoup its losses. Seagrass ecosystems play a vital role as coastal ecological infrastructure. Protecting vulnerable meadows from anthropogenic fragmentation is crucial for ensuring the resilience of these ecosystems in the face of the climate crisis.This study was funded by the CSIC project “Effects of storm Gloria on the western Mediterranean meadows (202030E052) and “Storms of change: as phenomena extreme weather alters Mediterranean coastal ecosystems, their services and their perception by society" (PID2020-113745RB-I00), state program of I+D+I Oriented to the Challenges of the Society and within the framework of the activities of the Spanish Government through the "Maria de Maeztu Centre of Excellence” accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198). We want to thank the SPAS (Society of Fishing and Underwater Activities of Mataró) and the Mataró City Council, which has financed 25 years of the Alguer de Mataró project
Geographical presences and absences. The role of Spanish academic geography in geopolitical debates
A set of factors has converged to create geopolitical issues of great importance in contemporary Spain. These relate as much to the incorporation of Spain in the process of globalization as to the internal organization of the Spanish State. This chapter examines the contribution of Spanish academic geography in the first two decades of this century to research and debate in the feld of political geography. The chapter has been prepared on the basis of a systematic review of the main Spanish academic journals in the feld, as well as references to a very considerable bibliography. The chapter comprises fve sections: the introduction presents the importance of geopolitical factors in contemporary Spain and states the hypothesis and methodology adopted to develop the chapter; the second section looks at the output of Spanish academic geography on the geopolitical position of the Iberian countries with respect to various geographical areas; the third focuses on studies concerning the borders of the Spanish state; the fourth section examines the work dealing with the institutional organization of what the 1978 Spanish Constitution calls 'nationalities and regions'; and fnally, the ffth section homes in on research into the spatial aspects of local and metropolitan governments. The chapter is then rounded off by a few brief conclusions
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Novel genes and sex differences in COVID-19 severity
[EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
A genome‐wide association meta‐analysis of all‐cause and vascular dementia
INTRODUCTION: Dementia is a multifactorial disease with Alzheimer's disease (AD) and vascular dementia (VaD) pathologies making the largest contributions. Yet, most genome-wide association studies (GWAS) focus on AD. METHODS: We conducted a GWAS of all-cause dementia (ACD) and examined the genetic overlap with VaD. Our dataset includes 800,597 individuals, with 46,902 and 8702 cases of ACD and VaD, respectively. Known AD loci for ACD and VaD were replicated. Bioinformatic analyses prioritized genes that are likely functionally relevant and shared with closely related traits and risk factors. RESULTS: For ACD, novel loci identified were associated with energy transport (SEMA4D), neuronal excitability (ANO3), amyloid deposition in the brain (RBFOX1), and magnetic resonance imaging markers of small vessel disease (SVD; HBEGF). Novel VaD loci were associated with hypertension, diabetes, and neuron maintenance (SPRY2, FOXA2, AJAP1, and PSMA3). DISCUSSION: Our study identified genetic risks underlying ACD, demonstrating overlap with neurodegenerative processes, vascular risk factors, and cerebral SVD. Highlights: We conducted the largest genome-wide association study of all-cause dementia (ACD) and vascular dementia (VaD). Known genetic variants associated with AD were replicated for ACD and VaD. Functional analyses identified novel loci for ACD and VaD. Genetic risks of ACD overlapped with neurodegeneration, vascular risk factors, and cerebral small vessel disease
- …
