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Abstract

Background: To facilitate population screening and clinical trials of disease-modifying therapies for Alzheimer’s
disease, supportive biomarker information is necessary. This study was aimed to investigate the association of
plasma amyloid-beta (Aβ) levels with the presence of pathological accumulation of Aβ in the brain measured by
amyloid-PET. Both plasma Aβ42/40 ratio alone or combined with an FDG-PET-based biomarker of
neurodegeneration were assessed as potential AD biomarkers.

Methods: We included 39 cognitively normal subjects and 20 patients with mild cognitive impairment from the
AB255 Study who had undergone PiB-PET scans. Total Aβ40 and Aβ42 levels in plasma (TP42/40) were quantified
using ABtest kits. Subjects were dichotomized as Aβ-PET positive or negative, and the ability of TP42/40 to detect
Aβ-PET positivity was assessed by logistic regression and receiver operating characteristic analyses. Combination of
plasma Aβ biomarkers and FDG-PET was further assessed as an improvement for brain amyloidosis detection and
diagnosis classification.

Results: Eighteen (30.5%) subjects were Aβ-PET positive. TP42/40 ratio alone identified Aβ-PET status with an area
under the curve (AUC) of 0.881 (95% confidence interval [CI] = 0.779–0.982). Discriminating performance of TP42/40
to detect Aβ-PET-positive subjects yielded sensitivity and specificity values at Youden’s cutoff of 77.8% and 87.5%,
respectively, with a positive predictive value of 0.732 and negative predictive value of 0.900. All these parameters
improved after adjusting the model for significant covariates. Applying TP42/40 as the first screening tool in a
sequential diagnostic work-up would reduce the number of Aβ-PET scans by 64%. Combination of both FDG-PET
scores and plasma Aβ biomarkers was found to be the most accurate Aβ-PET predictor, with an AUC of 0.965 (95%
CI = 0.913–0.100).

Conclusions: Plasma TP42/40 ratio showed a relevant and significant potential as a screening tool to identify brain
Aβ positivity in preclinical and prodromal stages of Alzheimer’s disease.
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impairment
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Background
Alzheimer’s disease (AD) is a progressive neurodegener-
ative disorder and the most common cause of dementia.
Accumulating data from clinical research support that
the AD pathophysiologic process starts decades before
the onset of clinical symptoms [1–3]. The disease
develops in a continuum from a preclinical stage in
which amyloid pathology has been defined as the earliest
Alzheimer’s pathological changes [3–5]. Thus, individ-
uals at the preclinical or prodromal AD stages represent
an important target group in the context of clinical trials
and population screening. New diagnostic procedures
can identify measurable brain changes by positron emis-
sion tomography (PET) and cerebrospinal fluid (CSF)
analysis, even at the preclinical stage. These procedures
have been incorporated in the National Institute of
Aging–Alzheimer’s Association A/T/(N) research frame-
work for the biological definition of AD [5].
A large number of clinical studies very consistently

show that these neuroimaging or CSF biomarkers pro-
vide relevant information for the diagnosis. Yet, blood-
based biomarkers are the desirable tool for large-scale
assessments of patients either in clinical research or,
eventually, in primary clinical settings, due to their cost-
effectiveness and easiness of procedures [6].
Despite previous studies yielding contradictory results

[7–9], recent works have shown an association of low
plasma Aβ42/40 ratio with AD [10–13]. Plasma Aβ42/40
ratio has also demonstrated value in detecting brain Aβ
pathological changes [14–16], even using different meth-
odological approaches as mass spectrometry (MS) and
new-generation immunological methods [17–19]. Our
group has been largely working on the development of
reliable and informative plasma biomarkers based on Aβ
measurements [20]. We have previously reported a consist-
ent association between a low TP42/40 ratio and both clin-
ical MCI diagnosis [21] and Aβ accumulation in the brain
[22, 23]. Reduced TP42/40 levels were also found to predict
higher rates of Aβ accumulation in the brain [22, 24]. Fur-
thermore, it has been recently reported that lower TP42/40
ratio levels were also associated with increased cortical up-
take of the [18F]Flortaucipir tau-PET marker in AD-related
regions [25].
PET imaging, using the most widely available radio-

tracer ([18F]fluorodeoxyglucose PET, FDG-PET) as a
measure of cerebral glucose metabolism, is a marker of
neurodegeneration that has been established as a sensi-
tive tool for detecting neuronal dysfunction [26]. FDG-
PET diagnostic performance could be upgraded by the
use of quantitative indices that have been developed to
account for inter-observer variability and to support
challenging evaluation [27–29]. Arbizu et al. have
previously described FDG-based automated quantitative
scores, such as the AD conversion score (AD-Conv

score), which has proved to predict and detect AD
dementia with good diagnostic performance [30].
This work was primarily aimed to investigate the po-

tential value of the TP42/40 ratio as a screening tool for
brain Aβ-PET positivity in a population of 59 CN and
amnesic MCI (a-MCI) patients. This population was par-
tially explored in a previous work in which clinical per-
formance of TP42/40 was evaluated (considering clinical
diagnosis as the gold standard), together with a general
assessment of the correlation of TP42/40 with CSF and
Aβ-PET biomarkers. With this study, we pursued
confirming previous results from our own group in an
independent AIBL population [22], focusing in the
discriminating performance of TP42/40 in detecting Aβ
positivity in the brain. Secondarily, we have explored the
potential value added by the combination of Aβ plasma
levels and AD-Conv score to improve prediction of Aβ-
PET status at early disease stages. Furthermore, in the
framework of the new biological concept of AD based in
the A/T/(N) system [5], we also explored if combination
of both the TP42/40 plasma ratio, as a β-amyloid marker
(A), and AD-Conv score, reflecting neurodegeneration
(N), might help in clinical assessment at early stages.

Methods
Participants
The AB255 Study is a multicenter longitudinal study
with evaluations of the cognitive status of individuals at
0, 12, and 24 months, including 83 cognitively normal
(CN) and 145 age-paired subjects with probable a-MCI
[31], all over 64 years of age. The study was designed to
evaluate the potential of blood-based Aβ biomarkers to
detect AD. A complete description of the AB255 Study
protocols and population details have been previously
referred [21]. Clinical diagnosis of each participant was
performed using an extensive neurological examination
[32] and a battery of neuropsychological tests, including
evaluation of global cognition using the Mini-Mental State
Examination [33, 34] and verbal learning and memory by
The Word List Learning test from the Wechsler Memory
Scale-Third Edition (WMS-III) [35], delayed recall and a
recognition task without list of interference [36], and the
Free and Cued Selective Reminding Test (FCSRT) [37]. A
subpopulation of 39 cognitively normal subjects and 20
patients with a-MCI who had undergone PiB-PET scans
and fulfilled criteria for inclusion were considered for the
present work. Participants were all recruited and assessed
from 2010 to 2013 at The Memory Clinic from Fundació
ACE (Barcelona, Spain) [38].

Plasma analyses
EDTA blood was obtained after overnight fasting, and
samples were immediately cooled to 2–8 °C until proc-
essed within 30 h of collection by centrifugation at
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2500×g for 15 min at 4 °C. Plasma was appropriately ali-
quoted in polypropylene tubes and stored at − 80 °C
until analysis, avoiding freeze-thaw cycles. ABtest40 and
ABtest42 ELISA kits (Araclon Biotech Ltd., Spain) were
used for the quantification of total Aβ40 and Aβ42 in
plasma after proprietary treatment of the sample. The
specific analytical procedures and performance charac-
teristics of these tests are described elsewhere [20].
Samples were randomized and encoded by an external
CRO to guarantee the validity of results.

PiB-PET analysis
Cortical Aβ burden was assessed by PET using 11C-
Pittsburg compound B (PiB-PET). Detailed procedures
of neuroimaging acquisition and analysis are described
by Espinosa et al. [31]. Imaging data were analyzed using
the Fundació ACE Pipeline for Neuroimaging Analysis,
available at http://detritus.fundacioace.com/. Participants
were classified as β-amyloid positive (PET-Aβ(+)) or β-
amyloid negative (PET-Aβ(−)) with relation to a cutoff
of 1.4 SUVR in PiB-PET scans [39].

FDG-PET analysis
PET acquisition was performed after 4 h of fasting and
once it was confirmed that blood glucose levels were
below 110mg/dl. The dose of 18FDG was established ac-
cording to weight (150 μCi/kg), being the standard adult
dose 10mCi (370MBq) in a volume of 1–10ml saline.
Dosimetry was established in accordance with ICRP 53.
For adults, critical organ dose (bladder) was 0.16 mGy/
MBq and effective dose was 0.019 mSv/MBq. Acquisition
started 40 min after 18FDG administration and lasted for
20 min. FDG-PET scans were analyzed following the
procedure previously described by Arbizu et al. [30].
Using this automated voxel-based analytical method,
quantitative indices were developed to compute the hypo-
metabolic pattern of each subject. The AD-Conv score
integrates the information provided by PET into a multi-
variate model including age, gender, Mini-Mental State
Examination (MMSE) score, and APOE ε4 genotype.

APOE genotyping
Genomic DNA was isolated from EDTA blood. Target
DNA was amplified by PCR and digested with the re-
striction enzyme HhaI. APOE genotyping was carried
out by subsequent restriction analysis of the pattern of
fragments obtained after electrophoresis in a polyacryl-
amide gel [40].

Statistical analysis
Statistical analysis was performed using SPSS version 22
for Windows (SPSS Inc., Chicago, IL). A probability level
of p < 0.05 was considered statistically significant. Total
in plasma Aβ42/40 ratio (TP42/40) and AD-Conv score

were used as the predictive variables. Demographic char-
acteristics and biomarker levels were first compared be-
tween groups using chi-squared and Mann-Whitney
tests as appropriate. Statistically significant differences in
TP42/40 levels between Aβ-PET(+) and Aβ-PET(−) indi-
viduals were evaluated using generalized linear regres-
sion models (GLM) adjusted for significant demographic
covariates (age, APOE genotype, and clinical group).
Correlation of quantitative measures of both plasma
TP42/40 ratio and AD-Conv score with Aβ-PET SUVR
was assessed by Spearman rank correlation analyses.
The association of TP42/40 and AD-Conv score with

PET-based abnormal amyloid status was further investi-
gated using logistic regression followed by receiver oper-
ating characteristic (ROC) curve analyses. Predicted
values of binary logistic regression models were used to
combine variables in ROC analysis. All TP42/40 models
were adjusted for age, APOE genotype (APOEε4 allele
carriers versus non-carriers), and clinical diagnosis. AD-
Conv score was determined by a multivariate model
already including age and APOE ε4 genotype, so it was
not readjusted for these covariates in the analysis.
Plasma and FDG-PET biomarkers were evaluated alone
or in combination, so that improvement in classification
performance using both amyloid and neurodegeneration
information derived from them was assessed. Youden’s
index maximizing cutoffs were considered for evaluation
of biomarker performance in detecting brain Aβ positiv-
ity, either individually or combined. This same proced-
ure was applied to the total AB255 population to assess
TP42/40 and AD-Conv score clinical discrimination
ability (CN versus a-MCI). For visualization purposes,
heat maps representing predicted probability of brain Aβ
positivity depending on the chosen TP42/40 cutoff were
depicted with regard to age and APOE genotype.

Results
Demographic characteristics of the population included
in this study are summarized in Table 1. Eighteen
(30.5%) individuals were classified as Aβ-PET(+), and
most of them were clinically diagnosed as a-MCI (14 a-
MCI Aβ-PET(+) versus 6 a-MCI Aβ-PET(−)). Likewise,
35 out of the 39 CN individuals were classified as Aβ-
PET(−). Comparing Aβ-PET(+) and Aβ-PET(−) groups,
subjects with abnormal Aβ-PET status were on average
older and were more frequently APOE 4 carriers. Age,
APOE 4, and clinical diagnosis were significantly
different between groups, whereas no statistically signifi-
cant differences were found with regard to gender or
education level (Table 1). Both AD-Conv score and
TP42/40 were significantly different between Aβ-PET
groups (Mann-Whitney p < 0.001) and correlated with
Aβ-PET SUVR measures (TP42/40 rs = − 0.464; AD-
Conv score rs = 0.581; both p < 0.001). Figure 1 shows
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these associations including information of the clinical
status of each participant.
Plasma TP42/40 ratio was in average 25% lower in

PET-Aβ(+) subjects compared to PET-Aβ(−) individuals
(Table 1 and Fig. 2). After adjusting for significant
demographic covariates (age, APOE 4, and clinical
diagnosis), association of TP42/40 with Aβ-PET status
remained statistically significant (GLM β = 87.67, p =
0.005). ROC analysis revealed an AUC of 0.881 (95%
confidence interval [CI] 0.779–0.982) for the prediction
of Aβ-PET positivity using TP42/40 alone (Fig. 3a). The
Youden’s cutoff of plasma TP42/40 ratio was 0.1049 and
yielded a sensitivity of 77.8% and a specificity of 87.5%
in detecting PET-Aβ(+) subjects (Table 2). When study-
ing independently CN and a-MCI subjects, we found
excellent performance of TP42/40 in the CN group
(AUC unadjusted TP42/40 0.957, 95% CI 0.890–1.000),
although it declined in the a-MCI group (AUC un-
adjusted TP42/40 0.814, 95% CI 0.617–1.000) (Table 2).
When adjusting TP42/40 with relevant covariates (age,

APOE genotype, and clinical group), discrimination was

improved yielding an AUC of 0.963 (95% CI 0.917–
1.000). Sensitivity, specificity, and NPV were all over
0.920 (Fig. 3b, Table 2). We used the logistic regression
model to predict probabilities of Aβ-PET positivity with
regard to age in both APOE ε4 non-carriers (Fig. 4a)
and carriers (Fig. 4b). This figure represents a statistical
inference since the actual study population does not
cover all the age ranges represented. As expected, the
predicted probability increased with age and was always
higher in APOE ε4 carriers compared to non-carriers.
Low TP42/40 ratio considerably augmented likelihood of
abnormal Aβ-PET status for every genotype and age
condition. Indeed, the high NPV and low LR− character-
ized TP42/40 as an ideal marker for pre-screening.
Considering a hypothetical clinical trial targeting Aβ-
PET-positive subjects, a recruitment procedure based in
Aβ-PET alone would require 3.3 PET scans per success-
ful recruitment. However, following a sequential strategy
including a TP42/40 pre-screening stage would require
1.2 Aβ-PET scans per successful recruitment, implying a
64% saving in PET scans.

Table 1 Demographic and biomarker features of this population

Aβ-PET (−) Aβ-PET (+) p value

N (%) 41 (69.5%) 18 (30.5%)

Age, mean (SD) 71.6 (4.11) 75.2 (5.65) p 0.014

Gender Female, n (%) 18 (43.9%) 9 (50.0%) p 0.665

APOE4 carriers, n (%) 6 (14.6%) 12 (66.7%) p < 0.001

Education level, mean years (SD) 12.33 (3.96) 10.56 (4.44) p 0.113

CN/a-MCI, n (% a-MCI) 35/6 (14.6%) 4/14 (77.8%) p < 0.001

TP42/40, mean (SD) 0.1329 (0.0208) 0.0997 (0.0197) p < 0.001

AD-Conv score, mean (SD) 0.133 (0.162) 0.384 (0.259) p < 0.001

p value was obtained from Mann-Whitney or chi-squared tests as appropriate. SD standard deviation, CN cognitively normal, a-MCI amnestic mild cognitive
impairment, Aβ amyloid-beta, TP42/40 total plasma Aβ42/40 ratio, AD-Conv score AD conversion score based on FDG-PET

Fig. 1 Correlation of TP42/40 and AD-Conv score with Aβ-PET. Scatterplots of plasma TP42/40 ratio (a) and AD-Conv score (b) levels with regard
to PiB-PET. Blue: cognitively normal (CN) subjects. Red: amnestic mild cognitive impairment (a-MCI) individuals. Both TP42/40 and AD-Conv score
biomarkers showed a significant correlation with Aβ-PET, although in inverse directions. rs Spearman rank correlation coefficient
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AD-Conv score was also evaluated as a predictor of
Aβ-PET positivity in this cohort, showing good diagnos-
tic performance (AUC 0.898, 95% CI 0.817–0.979)
(Fig. 3b), and sensitivity and specificity values at max-
imum Youden’s cutoff of 100% and 67.5%, respectively

(Table 2). Thus, we hypothesized that a combination of
both plasma TP42/40 and neurodegeneration (FDG-
PET) biomarkers could outperform the single-predictor
models in detecting Aβ-PET(+) subjects.
The combined model of plasma Aβ and neurodegener-

ation biomarkers (AdjTP42/40+AD-Conv score) im-
proved performance of both individual biomarkers and
covariates alone (Fig. 3c) to discriminate Aβ-PET status.
AUC for this model was found to be 0.965 (95% CI
0.921–1.000), with very high sensitivity and specificity
(> 92%) and NPV of 1.00 (Table 2).
On the other hand, TP42/40 performed poorly at dis-

criminating between CN and a-MCI patients in the
whole AB255 study population (AUC = 0.639, 95% CI
0.564–0.714). Nevertheless, combining TP42/40 with
AD-Conv score improved subjects’ clinical classification
up to an AUC of 0.915 (95% CI 0.875–0.955). The effect
is mainly driven by AD-Con score which by itself alone
presented an AUC of 0.893 (95% CI 0.849–0.937).

Discussion
In this study, we aimed at assessing the potential value
of TP42/40 ratio in the prediction of brain Aβ pathology
measured by Aβ-PET in a preclinical and prodromal AD
cohort of 59 patients from the AB255 Study. In addition,
the present study evaluated the potential benefit of the
combination of amyloid and neurodegeneration bio-
markers, reflected by plasma TP42/40 and the FDG-
PET-derived AD-Conv score [30]. Both individually and
combined, these biomarkers significantly detected Aβ
pathology in the brain. Combination of adjusted TP42/
40 ratio and AD-Conv score was found to be the most
accurate Aβ-PET predictor, with sensitivity of 100% and
specificity of 92.3%.

Fig. 2 Distribution of TP42/40 levels between Aβ-PET groups. Dots
represent the individual TP42/40 ratio obtained for each patient with
regard to their Aβ-PET status. Continuous lines represent mean
TP42/40 values and standard mean error. The dashed line represents
the Youden’s cutoff (0.1094) PET-Aβ positivity discrimination using
TP42/40 alone. p value from the generalized linear model (GLM) was
also included

Fig. 3 Receiver operating characteristic (ROC) curves discriminating Aβ-PET(+) from Aβ-PET(−) subjects. ROC curve and the corresponding area
under the curve (AUC) with 95% confidence interval (CI) are depicted for the following models: a TP42/40 alone; b TP42/40 adjusted for age,
APOE genotype, and clinical group (AdjTP42/40) and AD-Conv score; c models including only significant demographic covariates (age, APOE
genotype, and clinical group) and the combined model of amyloidosis and neurodegeneration (AdjTP42/40+AD-Conv score)
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Aβ-PET(+) patients showed significantly lower levels
of TP42/40, with an average reduction of 25% compared
to the Aβ-PET(−) group. This significant inverse associ-
ation of plasma Aβ42/40 ratio with brain Aβ deposition
is in accordance with previous studies [14–19]. These

findings also replicate our previous results showing the
potential of TP42/40 as a surrogate biomarker of Aβ-
PET status in an independent preclinical population
[22]. TP42/40 ratio adjusted for significant covariates
detected Aβ-PET positivity in the present cohort with

Table 2 Diagnostic performance of individual and combined models in detecting Aβ-PET positivity at Youden’s cutoff

Sensitivity Specificity PPV NPV LR+ LR−

Whole population (N = 59)

TP42/40 0.778 0.875 0.732 0.900 6.22 0.25

Age+APOE4+Clinical Group 0.944 0.805 0.680 0.945 4.84 0.07

TP42/40+Age+APOE4+Clinical Group 0.944 0.925 0.847 0.974 12.59 0.06

AD-Conv score 1.000 0.675 0.706 1.000 3.08 0.00

AdjustedTP42/40+AD-Conv score 1.000 0.923 0.851 1.000 13.00 0.00

Only CN (N = 39)

TP42/40 1.000 0.886 0.500 1.000 8.75 0.00

Age+APOE4 0.750 0.943 0.600 0.971 12.12 0.26

TP42/40+Age+APOE4 1.000 1.000 1.000 1.000 – 0.00

AD-Conv score 1.000 0.765 0.327 1.000 4.25 0.00

AdjustedTP42/40+AD-Conv score 1.000 1.000 1.000 1.000 – 0.00

Only a-MCI (N = 20)

TP42/40 0.714 1.000 1.000 0.653 – 0.29

Age+APOE4 0.357 0.833 0.799 0.411 2.14 0.77

TP42/40+Age+APOE4 0.643 1.000 1.000 0.601 – 0.36

AD-Conv score 0.846 0.500 0.759 0.636 1.70 0.31

AdjustedTP42/40+AD-Conv score 0.615 1.000 1.000 0.583 – 0.38

Cases in which LR+ was not quantifiable were presented as –. Prevalence considered for each group calculation was corresponding to the present cohort: 30.5%
in the whole population, 10.25% in the CN group, and 65% in the a-MCI group. PET PPV-positive predictive value, NPV negative predictive value, LR+ positive
likelihood ratio, LR− negative likelihood ratio

Fig. 4 Heat maps showing predicted probability of being Aβ-PET(+) based on TP42/40 and age stratified for APOE genotype. Predicted
probabilities in APOE Ɛ4 non-carriers (a) and APOE Ɛ4 carriers (b). Probabilities are displayed as percentages. Note that TP42/40 decreases upward
in axis for optimal visualization purposes. It should be noted that probabilities were predicted from a logistic regression model modeling
expected probabilities in the age range most likely present during pre-screening or clinical assessment. These predicted probabilities could be
more accurately determined in a larger population including the complete age range
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94.4% sensitivity and 92.5% specificity. This means that
in a sequential screening scenario aiming to detect sub-
jects with abnormal Aβ-PET status, a first step assessing
TP42/40 would allow a 64% reduction in the number of
Aβ-PET scans. Considering the restricted availability and
costs of Aβ-PET neuroimaging [41], this sequential
strategy would imply a significant reduction of the pa-
tient burden and procedural costs, both for clinical trials
and patient management at primary care settings.
Clinical performance of plasma Aβ42/Aβ40 in the

present study is comparable to that obtained using MS-
based methods [17, 18] or new-generation immuno-
logical assays [19] and are congruent with other studies
demonstrating a consistent inverse association of the
plasma Aβ42/Aβ40 with the disease [10–13, 42, 43].
Nevertheless, there still exists considerable overlap of
plasma Aβ ratio between diagnostic groups or amyloid
status groups, which limits the use of Aβ plasma ratios
for clinical diagnosis at the individual level. On the other
hand, clinical performance of plasma biomarkers is also
hampered by the fact that Aβ-PET classification, used as
the gold standard, neither is utterly precise. In line with
this, plasma TP42/40 false-positive results could corres-
pond to a-MCI subjects who are already accumulating
Aβ in the brain, but have not reached the threshold for
abnormal status yet. If this were the case, plasma Aβ
biomarkers would turn out to be abnormal before Aβ-
PET does. Alternatively, misclassification could be due
to heterogeneity of the underlying disease in a-MCI
patients. When using only CN to explore TP42/40 po-
tential in detecting Aβ-PET+ subjects, results are better
compared to the a-MCI group or the mixed population.
Adjusted TP42/40 can accurately detect the 4 AB-PET+
individuals in the cohort of 39 CN, which confirms the
preclinical potential of this biomarker when detecting
Aβ abnormality in the brain, detected also in previous
work from our group [22]. However, due to the small
size of the CN and a-MCI groups in the present popula-
tion, together with the different prevalence of Aβ-PET
positivity, these findings should be taken cautiously and
further replicated.
AD-Conv score has proven a significant correlation

with Aβ-PET and a good performance in detecting brain
Aβ pathology within this cohort, being the AUC values
obtained within the range previously defined [30]. These
results reinforce the suitability of quantitative indices
derived from automated FDG-PET measures replacing
standard qualitative brain FDG-PET imaging [27–29].
Previous studies evaluating the association of FDG-

PET and Aβ-PET measures have shown discrepant
results. Several works did not find a correlation in AD
[44–46], MCI [47], and CN individuals [48, 49], although
it was found in other cohorts [50–54]. Another study
including both CN and MCI individuals showed a

significant correlation between PiB-PET and FDG-PET
[55], corresponding well to our findings.
Only few studies have explored combination of FDG-

PET and Aβ biomarkers, mostly in CSF and strictly
focused on conversion to AD dementia [43, 46–48]. Inter-
estingly, combination of TP42/40 and AD-Conv score im-
proves subjects’ clinical classification into CN or a-MCI.
As could be expected, the effect is mainly driven by the
AD-Conv score which itself integrates into a multivariate
model FDG-PET neurodegeneration (downstream to β-
amyloid changes as per the amyloid cascade hypothesis)
with APOE genotype, MMSE score, age, and gender. This
approach is in agreement with the recent research frame-
work based on the A/T/(N) system [5], and our findings
support the suitability of a biological definition of AD,
measured by biomarkers that are reflecting different pro-
cesses underlying AD clinical manifestations.
Larger and varied populations need to be explored in

order to confirm the potential utility of FDG-PET and
TP42/40 combination, which may vary depending on
population characteristics and disease stage. In fact, the
overall improvement of the adjusted TP42/40 model by
AD-Conv score, although relevant, was relatively modest
in our cohort. Another weakness of our study is the ab-
sence of a PiB-PET follow-up, which would be of great
utility in ascertaining the potential prognostic value of
plasma biomarkers to predict the rate of brain Aβ de-
position and could have provided relevant evidence for
elucidating the possible source of bias in the classifica-
tion performance.

Conclusions
This study demonstrates a consistent inverse association
of plasma TP42/40 and FDG-PET biomarkers with Aβ-
PET status. Findings from this work replicate our previous
results in different cohorts, hence confirming TP42/40 as
a useful biomarker to rule out brain β-amyloidosis in pre-
clinical and early AD stages. Plasma TP42/40 tests may be
used as an initial screening tool for patient management;
only those resulting TP42/40 positives would have to
undergo diagnostic confirmation by CSF analysis or PET
neuroimaging. Integration of neurodegeneration and
blood-based Aβ biomarkers could contribute to early AD
diagnosis in compliance with the A/T/(N) research frame-
work, although it requires further validation.
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