119 research outputs found

    1,1,1-Trifluoro-4-(thio­phen-2-yl)-4-[(2-{[4,4,4-trifluoro-3-oxo-1-(thio­phen-2-yl)but-1-en-1-yl]amino}­eth­yl)amino]­but-3-en-2-one

    Get PDF
    The asymmetric unit of the diamine compound, C18H14F3N2O2S2, consists of two mol­ecules; the C=C double bond has a Z configuration in the C4H3S—C=C—C(=O)—C segment. The –NH—CH2—CH2—NH chain adopts a twisted U-shape. The amino group is an intra­molecular hydrogen-bond donor to the carbonyl group; the intra­molecular hydrogen bond generates a six-membered ring. In both mol­ecules, the thienyl rings are disordered over two positions; the occupancies of the major components are 0.817 (4) and 0.778 (4) in one mol­ecule and 0.960 (4) and 0.665 (4) in the other. One of the trifluoro­methyl groups is disordered over two positions with the major component having 0.637 (8) occupancy

    The Use of Antihypertensive Medication and the Risk of Breast Cancer in a Case-Control Study in a Spanish Population: The MCC-Spain Study

    Get PDF
    The evidence on the relationship between breast cancer and different types of antihypertensive drugs taken for at least 5 years is limited and inconsistent. Furthermore, the debate has recently been fueled again with new data reporting an increased risk of breast cancer among women with a long history of use of antihypertensive drugs compared with nonusers

    Physical function and self-rated health status as predictors of mortality: results from longitudinal analysis in the ilSIRENTE study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical function measures have been shown to predict negative health-related events in older persons, including mortality. These markers of functioning may interact with the self-rated health (SRH) in the prediction of events. Aim of the present study is to compare the predictive value for mortality of measures of physical function and SRH status, and test their possible interactions.</p> <p>Methods</p> <p>Data are from 335 older persons aged ≥ 80 years (mean age 85.6 years) enrolled in the "Invecchiamento e Longevità nel Sirente" (<it>ilSIRENTE</it>) study. The predictive values for mortality of 4-meter walk test, Short Physical Performance Battery (SPPB), hand grip strength, Activities of Daily Living (ADL) scale, Instrumental ADL (IADL) scale, and a SRH scale were compared using proportional hazard models. Kaplan-Meier survival curves for mortality and Receiver Operating Characteristic (ROC) curve analyses were also computed to estimate the predictive value of the independent variables of interest for mortality (alone and in combination).</p> <p>Results</p> <p>During the 24-month follow-up (mean 1.8 years), 71 (21.2%) events occurred in the study sample. All the tested variables were able to significantly predict mortality. No significant interaction was reported between physical function measures and SRH. The SPPB score was the strongest predictor of overall mortality after adjustment for potential confounders (per SD increase; HR 0.64; 95%CI 0.48–0.86). A similar predictive value was showed by the SRH (per SD increase; HR 0.76; 95%CI 0.59–0.97). The chair stand test was the SPPB subtask showing the highest prognostic value.</p> <p>Conclusion</p> <p>All the tested measures are able to predict mortality with different extents, but strongest results were obtained from the SPPB and the SRH. The chair stand test may be as useful as the complete SPPB in estimating the mortality risk.</p

    Physical activity and exercise: Strategies to manage frailty

    Get PDF
    Frailty, a consequence of the interaction of the aging process and certain chronic diseases, compromises functional outcomes in the elderly and substantially increases their risk for developing disabilities and other adverse outcomes. Frailty follows from the combination of several impaired physiological mechanisms affecting multiple organs and systems. And, though frailty and sarcopenia are related, they are two different conditions. Thus, strategies to preserve or improve functional status should consider systemic function in addition to muscle conditioning. Physical activity/exercise is considered one of the main strategies to counteract frailty-related physical impairment in the elderly. Exercise reduces age-related oxidative damage and chronic inflammation, increases autophagy, and improves mitochondrial function, myokine profile, insulin-like growth factor-1 (IGF-1) signaling pathway, and insulin sensitivity. Exercise interventions target resistance (strength and power), aerobic, balance, and flexibility work. Each type improves different aspects of physical functioning, though they could be combined according to need and prescribed as a multicomponent intervention. Therefore, exercise intervention programs should be prescribed based on an individual's physical functioning and adapted to the ensuing response.pre-print2.493 K

    Bone density and hemoglobin levels in older persons: results from the InCHIANTI study

    Get PDF
    Hypoxemia has been recognized as a risk factor for bone loss. The aim of the present study is to investigate the relationship of bone mass and density measures with anemia and hemoglobin levels in a large sample of older community-dwelling persons. The study is based on data from 950 participants enrolled in the "Invecchiare in Chianti" (Aging in the Chianti area, InCHIANTI) study. All the analyses were performed considering continuous hemoglobin levels as well as the dichotomous anemia variable (defined according to WHO criteria as hemoglobin < 12 g/dl in women and < 13 g/dl in men). A peripheral quantitative computerized tomography (pQCT) scan of the right calf was performed in all participants to evaluate total bone density, trabecular bone density, cortical bone density, and the ratio between cortical and total bone area. Linear regression analyses were used to assess the multivariate relationship of pQCT bone measures with anemia and hemoglobin levels after adjustment for demographics, chronic conditions, muscle strength and biological variables. Participants were 75.0 (SD 6.9) years old. In our sample, 101 participants (10.6%) were anemic. In women, coefficients from adjusted linear regression analyses evaluating the association between pQCT bone measures (per SD increase) and hemoglobin levels/anemia showed significant associations of anemia with total bone density (beta = -0.335, SE = 0.163; P = 0.04) and cortical bone density (beta = -0.428, SE = 0.160; P = 0.008). Relationships with borderline significance were found for the associations of anemia with trabecular bone density and the ratio between cortical and total bone area. Significant associations were found between hemoglobin levels and trabecular bone density (beta = 0.112, SE = 0.049; P = 0.02), total bone density (beta = 0.101, SE = 0.046; P = 0.03), cortical bone density (beta = 0.100, SE = 0.046; P = 0.03) and the ratio between cortical bone and total area (beta = 0.092, SE = 0.045; P = 0.04). In men, significant associations were found for hemoglobin levels with total bone density (beta = 0.076, SE = 0.036; P = 0.03) and cortical bone density (beta = 0.095, SE = 0.41; P = 0.02). A borderline significance was reported for the association between anemia and cortical bone density. We concluded that anemia and low hemoglobin levels are negatively and independently associated with bone mass and density. The bone loss associated with hemoglobin levels mainly occurs in the cortical bone. Women with lower hemoglobin levels demonstrate a higher bone loss than male counterpart

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease

    Get PDF
    Background: Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. Objectives: To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. Search methods: We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. Selection criteria: We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. Data collection and analysis: Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. Main results: We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted. Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and it may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence), and probably reduces risk of CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs), and arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear. Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression. There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, although LCn3 slightly reduced triglycerides and increased HDL. ALA probably reduces HDL (high- or moderate-quality evidence). Authors' conclusions: This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event risk, CHD mortality and arrhythmia

    Light Intensity Physical Activity and Sedentary Behavior in Relation to Body Mass Index and Grip Strength in Older Adults: Cross-Sectional Findings from the Lifestyle Interventions and Independence for Elders (LIFE) Study.

    Get PDF
    Background Identifying modifiable determinants of fat mass and muscle strength in older adults is important given their impact on physical functioning and health. Light intensity physical activity and sedentary behavior are potential determinants, but their relations to these outcomes are poorly understood. We evaluated associations of light intensity physical activity and sedentary time—assessed both objectively and by self-report—with body mass index (BMI) and grip strength in a large sample of older adults. Methods We used cross-sectional baseline data from 1130 participants of the Lifestyle Interventions and Independence for Elders (LIFE) study, a community-dwelling sample of relatively sedentary older adults (70-89 years) at heightened risk of mobility disability. Time spent sedentary and in light intensity activity were assessed using an accelerometer worn for 3–7 days (Actigraph GT3X) and by self-report. Associations between these exposures and measured BMI and grip strength were evaluated using linear regression. Results Greater time spent in light intensity activity and lower sedentary times were both associated with lower BMI. This was evident using objective measures of lower-light intensity, and both objective and self-reported measures of higher-light intensity activity. Time spent watching television was positively associated with BMI, while reading and computer use were not. Greater time spent in higher but not lower intensities of light activity (assessed objectively) was associated with greater grip strength in men but not women, while neither objectively assessed nor self-reported sedentary time was associated with grip strength. Conclusions In this cross-sectional study, greater time spent in light intensity activity and lower sedentary times were associated with lower BMI. These results are consistent with the hypothesis that replacing sedentary activities with light intensity activities could lead to lower BMI levels and obesity prevalence among the population of older adults. However, longitudinal and experimental studies are needed to strengthen causal inferences
    corecore