5,452 research outputs found

    Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3

    Get PDF
    The role of thermodynamics in assessing the intrinsic instability of the CH3NH3PbX3 perovskites (X = Cl,Br,I) is outlined on the basis of the available experimental information. Possible decomposition/degradation pathways driven by the inherent instability of the material are considered. The decomposition to precursors CH3NH3X(s) and PbX2(s) is first analysed, pointing out the importance of both the enthalpic and the entropic factor, the latter playing a stabilizing role making the stability higher than often asserted. For CH3NH3PbI3 the disagreement between the available calorimetric results makes the stability prediction uncertain. Subsequently, the gas-releasing decomposition paths are discussed, with emphasis on the discrepant results presently available, probably reflecting the predominance of thermodynamic or kinetic control. The competition between the formation of NH3(g)+CH3X(g), CH3NH2(g)+HX(g) or CH3NH3X(g) is analysed, in comparison with the thermal decomposition of methylammonium halides. In view of the scarce and inconclusive thermodynamic studies to-date available, the need for further experimental data is emphasized

    Test of different sensitizing dyes in dye-sensitized solar cells based on Nb2O5 photoanodes

    Get PDF
    High-performance dyes routinely employed in TiO2-based dye-sensitized solar cells (DSSCs) were tested in cells assembled using Nb2O5 nanostructure-based photoanodes. The sensitizers were chosen among both metal-complex (two Ru-based, N749 and C106, and one Zn-based dye, DNF12) and metal-free organic dyes (DNF01, DNF11 and DNF15). Two different sensitization processes were performed: the one commonly used for TiO2 photoanodes, and a new process relying on high pressure by autoclavation. The assembled cells were characterized by current density–voltage (J–V) curves under air mass (AM) 1.5 G illumination and in the dark, incident photon-to-current efficiency (IPCE) measurements, and electrochemical impedance spectroscopy. The tested cells show different proportional efficiencies of the dyes under investigation for Nb2O5- and TiO2-based devices. Furthermore, the results were compared with those obtained in our previous work using N719 anchored on Nb2O5. A remarkable efficiency value of 4.4% under 1 sun illumination was achieved by coupling the C106 dye with a nonvolatile electrolyte. This value is higher than the one attained under the same conditions by using N719

    A multiple scales approach to maximal superintegrability

    Full text link
    In this paper we present a simple, algorithmic test to establish if a Hamiltonian system is maximally superintegrable or not. This test is based on a very simple corollary of a theorem due to Nekhoroshev and on a perturbative technique called multiple scales method. If the outcome is positive, this test can be used to suggest maximal superintegrability, whereas when the outcome is negative it can be used to disprove it. This method can be regarded as a finite dimensional analog of the multiple scales method as a way to produce soliton equations. We use this technique to show that the real counterpart of a mechanical system found by Jules Drach in 1935 is, in general, not maximally superintegrable. We give some hints on how this approach could be applied to classify maximally superintegrable systems by presenting a direct proof of the well-known Bertrand's theorem.Comment: 30 pages, 4 figur

    Quantum Klein Space and Superspace

    Get PDF
    We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3,1)(3,1), (2,2)(2,2), (4,0)(4,0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2,2)(2,2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N=1\mathcal{N}=1 supersetting

    Screen printed Pb₃O₄ films and their application to photoresponsive and photoelectrochemical devices

    Get PDF
    A new and simple procedure for the deposition of lead (II, IV) oxide films by screen printing was developed. In contrast to conventional electrochemical methods, films can be also deposited on non-conductive substrates without any specific dimensional restriction, being the only requirement the thermal stability of the substrate in air up to 500 °C to allow for the calcination of the screen printing paste and sintering of the film. In this study, films were exploited for the preparation of both photoresponsive devices and photoelectrochemical cell photoanodes. In both cases, screen printing was performed on FTO (Fluorine-Tin Oxide glass) substrates. The photoresponsive devices were tested with I-V curves in dark and under simulated solar light with different irradiation levels. Responses were evaluated at different voltage biases and under light pulses of different durations. Photoelectrochemical cells were tested by current density⁻voltage (J-V) curves under air mass (AM) 1.5 G illumination, incident photon-to-current efficiency (IPCE) measurements, and electrochemical impedance spectroscopy

    Spinning particles and higher spin fields on (A)dS backgrounds

    Get PDF
    Spinning particle models can be used to describe higher spin fields in first quantization. In this paper we discuss how spinning particles with gauged O(N) supersymmetries on the worldline can be consistently coupled to conformally flat spacetimes, both at the classical and at the quantum level. In particular, we consider canonical quantization on flat and on (A)dS backgrounds, and discuss in detail how the constraints due to the worldline gauge symmetries produce geometrical equations for higher spin fields, i.e. equations written in terms of generalized curvatures. On flat space the algebra of constraints is linear, and one can integrate part of the constraints by introducing gauge potentials. This way the equivalence of the geometrical formulation with the standard formulation in terms of gauge potentials is made manifest. On (A)dS backgrounds the algebra of constraints becomes quadratic, nevertheless one can use it to extend much of the previous analysis to this case. In particular, we derive general formulas for expressing the curvatures in terms of gauge potentials and discuss explicitly the cases of spin 2, 3 and 4.Comment: 35 pages, added reference

    Patterns of co-occurrence of rare and threatened species in winter arable plant communities of Italy

    Get PDF
    Detecting patterns of species co-occurrence is among the main tasks of plant community ecology. Arable plant communities are important elements of agroecosystems, because they support plant and animal biodiversity and provide ecosystem services. These plant communities are shaped by both agricultural and environmental drivers. The pressure of intensive agriculture worldwide has caused the decline of many characteristic arable species and communities. Italy is the European country where arable plant biodiversity is the best preserved. In this study, we assessed the patterns of co-occurrence of rare and threatened arable plants in 106 plots of winter arable vegetation located from Piedmont to Calabria, in the mainland part of the country. For this purpose, we based our investigation on the analysis of a recently acquired dataset and on the European list of rare and threatened arable plants. We highlight how dierent species of conservation interest tend to occur in the same community. On the other hand, generalist and more competitive taxa show similar patterns of co-occurrence. We suggest that single species of conservation value could be suitable indicators of a well-preserved community. On the other hand, to be eective, conservation strategies should target the whole community, rather than single species

    Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to 2+1 Gravity

    Get PDF
    We present an in-depth investigation of the SL(2,R){\rm SL}(2,\mathbb{R}) momentum space describing point particles coupled to Einstein gravity in three space-time dimensions. We introduce different sets of coordinates on the group manifold and discuss their properties under Lorentz transformations. In particular we show how a certain set of coordinates exhibits an upper bound on the energy under deformed Lorentz boosts which saturate at the Planck energy. We discuss how this deformed symmetry framework is generally described by a quantum deformation of the Poincar\'e group: the quantum double of SL(2,R){\rm SL}(2,\mathbb{R}). We then illustrate how the space of functions on the group manifold momentum space has a dual representation on a non-commutative space of coordinates via a (quantum) group Fourier transform. In this context we explore the connection between Weyl maps and different notions of (quantum) group Fourier transform appeared in the literature in the past years and establish relations between them

    Poincare-Einstein Holography for Forms via Conformal Geometry in the Bulk

    Full text link
    We study higher form Proca equations on Einstein manifolds with boundary data along conformal infinity. We solve these Laplace-type boundary problems formally, and to all orders, by constructing an operator which projects arbitrary forms to solutions. We also develop a product formula for solving these asymptotic problems in general. The central tools of our approach are (i) the conformal geometry of differential forms and the associated exterior tractor calculus, and (ii) a generalised notion of scale which encodes the connection between the underlying geometry and its boundary. The latter also controls the breaking of conformal invariance in a very strict way by coupling conformally invariant equations to the scale tractor associated with the generalised scale. From this, we obtain a map from existing solutions to new ones that exchanges Dirichlet and Neumann boundary conditions. Together, the scale tractor and exterior structure extend the solution generating algebra of [31] to a conformally invariant, Poincare--Einstein calculus on (tractor) differential forms. This calculus leads to explicit holographic formulae for all the higher order conformal operators on weighted differential forms, differential complexes, and Q-operators of [9]. This complements the results of Aubry and Guillarmou [3] where associated conformal harmonic spaces parametrise smooth solutions.Comment: 85 pages, LaTeX, typos corrected, references added, to appear in Memoirs of the AM
    corecore