2,357 research outputs found

    Basal Phospholipase C (PLC) Activation is Obligatory for Cardiac Pacemaker Activity

    Get PDF

    Arterial–Ventricular Coupling with Aging and Disease

    Get PDF
    Age is the dominant risk factor for cardiovascular diseases. Understanding the coupling between the left ventricle (LV) and arterial system, termed arterial–ventricular coupling (EA/ELV), provides important mechanistic insights into the complex cardiovascular system and its changes with aging in the absence and presence of disease. EA/ELV can be indexed by the ratio of effective arterial elastance (EA; a measure of the net arterial load exerted on the LV) to left ventricular end-systolic elastance (ELV; a load-independent measure of left ventricular chamber performance). Age-associated alterations in arterial structure and function, including diameter, wall thickness, wall stiffness, and endothelial dysfunction, contribute to a gradual increase in resting EA with age. Remarkably there is a corresponding increase in resting ELV with age, due to alterations to LV remodeling (loss in myocyte number, increased collagen) and function. These age-adaptations at rest likely occur, at least, in response to the age-associated increase in EA and ensure that EA/ELV is closely maintained within a narrow range, allowing for optimal energetic efficiency at the expense of mechanical efficacy. This optimal coupling at rest is also maintained when aging is accompanied by the presence of hypertension, and obesity, despite further increases in EA and ELV in these conditions. In contrast, in heart failure patients with either reduced or preserved ejection fraction, EA/ELV at rest is impaired. During dynamic exercise, EA/ELV decreases, due to an acute mismatch between the arterial and ventricular systems as ELV increases disproportionate compared to EA (≈200 vs. 40%), to ensure that sufficient cardiac performance is achieved to meet the increased energetic requirements of the body. However, with advancing age the reduction in EA/ELV during acute maximal exercise is blunted, due to a blunted increase ELV. This impaired EA/ELV is further amplified in the presence of disease, and may explain, in part, the reduced cardiovascular functional capacity with age and disease. Thus, although increased stiffness of the arteries itself has important physiological and clinical relevance, such changes also have major implications on the heart, and vice versa, and the manner in the way they interact has important ramifications on cardiovascular function both at rest and during exercise. Examination of the alterations in arterial–ventricular coupling with aging and disease can yield mechanistic insights into the pathophysiology of these conditions and increase the effectiveness of current therapeutic interventions

    Role of Inflammation in the Pathogenesis of Arterial Stiffness

    Get PDF
    Increased arterial stiffness is an independent predictor of cardiovascular disease independent from blood pressure. Recent studies have shed new light on the importance of inflammation on the pathogenesis of arterial stiffness. Arterial stiffness is associated with the increased activity of angiotensin II, which results in increased NADPH oxidase activity, reduced NO bioavailability and increased production of reactive oxygen species. Angiotensin II signaling activates matrix metalloproteinases (MMPs) which degrade TGFβ precursors to produce active TGFβ, which then results in increased arterial fibrosis. Angiotensin II signaling also activates cytokines, including monocyte chemoattractant protein-1, TNF-α, interleukin-1, interleukin-17 and interleukin-6. There is also ample clinical evidence that demonstrates the association of inflammation with increased arterial stiffness. Recent studies have shown that reductions in inflammation can reduce arterial stiffness. In patients with rheumatoid arthritis, increased aortic pulse wave velocity in patients was significantly reduced by anti tumor necrosis factor-α therapy. Among the major classes of anti hypertensive drugs, drugs that block the activation of the RAS system may be more effective in reducing the progression of arterial stiffness. Thus, there is rationale for targeting specific inflammatory pathways involved in arterial stiffness in the development of future drugs. Understanding the role of inflammation in the pathogenesis of arterial stiffness is important to understanding the complex puzzle that is the pathophysiology of arterial stiffening and may be important for future development of novel treatments

    Carotid beta stiffness association with thyroid function

    Get PDF
    Background: Thyroid hormone modulation of cardiovascular function has been associated with cardiovascular disease. Recent evidence suggests that free thyroxine (FT4) levels are associated with an increase in systemic arterial stiffness, but little is known about the effects of FT4 at the local level of the common carotid artery. β-stiffness index is a local elastic parameter usually determined by carotid ultrasound imaging. Methods: We conducted a cross-sectional analysis in the ProgeNIA cohort, including 4846 subjects across a broad age range. For the purpose of this study, we excluded subjects with increased thyrotropin (TSH) levels and those treated with levothyroxine or thyrostatic. We assessed β stiffness, strain, wall–lumen ratio, carotid cross-sectional area (CSA), and stress and flow in the right common carotid artery. We tested whether FT4, heart rate, and their interactions were associated with carotid parameters. Results: FT4 was positively and independently associated with β stiffness index (β = 0.026, p = 0.041), and had a negative association with strain (β = −0.025, p = 0.009). After adding heart rate and the interaction between FT4 and heart rate to the model, FT4 was still associated with the β stiffness index (β = 0.186, p = 0.06), heart rate was positively associated with the stiffness index (β = 0.389, p < 0.001) as well as their interaction (β = 0.271, p = 0.007). Conclusion: This study suggests that higher FT4 levels increase arterial stiffness at the common carotid level, consistent with a detrimental effect on elastic arteries. The effect of FT4 is likely to be primarily attributable to its effect on heart rate

    Increased Aortic Calpain-1 Activity Mediates Age-Associated Angiotensin II Signaling of Vascular Smooth Muscle Cells

    Get PDF
    Angiotensin II (Ang II) signaling, including matrix metalloproteinase type II (MMP2) activation, has been linked to an age-associated increase in migration capacity of vascular smooth muscle cells (VSMC), and to other proinflammatory features of arterial aging. Calpain-1 activation is required for MMP2 expression in fibroblasts and is induced in cardiomyocytes by Ang II. The consequences of engagement of calpain-1 with its substrates, however, in governing the age-associated proinflammatory status within the arterial wall, remains unknown.The present findings demonstrate that transcription, translation, and activity of calpain-1 are significantly up-regulated in rat aortae or early-passage aortic VSMC from old (30-mo) rats compared to young (8-mo). Dual immunolabeling of the arterial wall indicates that colocalization of calpain-1 and Ang II increases within the aged arterial wall. To further explore the relationship of calpain-1 to Ang II, we chronically infused Ang II into young rats, and treated cultured aortic rings or VSMC with Ang II. We also constructed adenoviruses harboring calpain-1 (CANP1) or its endogenous inhibitor calpastatin (CAST) and infected these into VSMC. Ang II induces calpain-1 expression in the aortic walls in vivo and ex vivo and VSMC in vitro. The Ang II mediated, age-associated increased MMP2 activity and migration in VSMC are both blocked by calpain inhibitor 1 or CAST. Over-expression of calpain-1 in young VSMC results in cleavage of intact vimentin, and an increased migratory capacity mimicking that of old VSMC, which is blocked by the MMP inhibitor, GM6001.Calpain-1 activation is a pivotal molecular event in the age-associated arterial Ang II/MMP2 signaling cascade that is linked to cytoskeleton protein restructuring, and VSMC migration. Therefore, targeting calpain-1 has the potential to delay or reverse the arterial remodeling that underlies age-associated diseases i.e. atherosclerosis

    Arterial stiffness and Vitamin D levels: the Baltimore Longitudinal Study of Aging

    Get PDF
    CONTEXT: The importance of vitamin D for bone health has long been acknowledged. Recent evidence suggests that vitamin D can also play a role in reducing the risk of several other diseases, including cardiovascular disease. OBJECTIVE: The aim of this study is to test the hypothesis that 25-hydroxyvitamin D (25-OH D) is an independent cross-sectional correlate of central arterial stiffness in a normative aging study population. DESIGN AND SETTINGS: We conducted a cross-sectional analysis. SUBJECTS: We studied 1228 healthy volunteers (50% males; age, 70\ub112 yr) of the Baltimore Longitudinal Study of Aging. MAIN OUTCOME MEASURES: We measured carotid-femoral pulse wave velocity (PWV) and 25-OH D levels. RESULTS: We found a significant inverse association between PWV and 25-OH D levels (adjusted r2=0.27; \u3b2=-0.43; P=0.001). After adjusting for age, gender, ethnicity, season of blood draw, estimated glomerular filtration rate, physical activity level, cardiovascular risk factors score (smoking, visceral obesity, hypercholesterolemia, hypertension, and diabetes), calcium/vitamin D supplementation, serum calcium, and PTH levels, the association between PWV and 25-OH D levels was only slightly reduced and remained statistically significant (adjusted r2=0.34; \u3b2=-0.34; P=0.04). CONCLUSIONS: Vitamin D levels are inversely associated with increased arterial stiffness in a normative aging population, irrespective of traditional risk factor burden. Further research is needed to understand the mechanism of this association and to test the hypothesis that vitamin D supplementation can reduce arterial stiffness

    Is age an independent determinant of mortality in cardiac surgery as suggested by the EuroSCORE?

    Get PDF
    BACKGROUND: The proportion of older patients in cardiac surgery is continuously increasing. 37% of patients undergoing heart surgery in Germany in the year 2000 were 70 years of age and older. We have studied the role of age as a determinant of mortality in cardiac surgery in our institutional patient population. METHODS: We have calculated the EuroSCORE and the corresponding age-adjusted EuroSCORE in 8769 patients who underwent heart surgery between January 1996 and January 2002 and collected the information on the occurrence of postoperative complications and 30-days mortality. RESULTS: The multimorbidity increased with ascending age. Both the EuroSCORE and the age-adjusted EuroSCORE values increased significantly with age in the whole group of patients as well as in the group of patients who were alive 30 days after heart surgery. The incidence of postoperative complications and 30-days mortality increased significantly with age. In patients who died within 30 days after surgery, the EuroSCORE increased significantly with age, whereas the age-adjusted EuroSCORE did not. The occurrence of diabetes mellitus, arterial hypertension and atrial fibrillation, i.e., the risk factors not considered by the EuroSCORE, exhibited a significant age dependence in our patients. The univariate analysis identified the significant dependence of 30-days mortality on diabetes and atrial fibrillation. The stepwise logistic regression analysis showed the dependence of mortality on diabetes. CONCLUSIONS: On the background of the well-known age-dependent structural and functional changes of different body organs, our data show that age is a significant risk indicator in cardiac surgery, strongly correlating with morbidity and mortality. Consequently, special preventive and therapeutic measures are required in clinical environment in the case of elderly patients undergoing cardiac surgery
    corecore