906 research outputs found

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables

    Distributed evolutionary algorithms and their models: A survey of the state-of-the-art

    Get PDF
    The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish

    Initialization of a Multi-objective Evolutionary Algorithms Knowledge Acquisition System for Renewable Energy Power Plants

    Get PDF
    pp. 185-204The design of Renewable Energy Power Plants (REPPs) is crucial not only for the investments' performance and attractiveness measures, but also for the maximization of resource (source) usage (e.g. sun, water, and wind) and the minimization of raw materials (e.g. aluminum: Al, cadmium: Cd, iron: Fe, silicon: Si, and tellurium: Te) consumption. Hence, several appropriate and satisfactory Multi-objective Problems (MOPs) are mandatory during the REPPs' design phases. MOPs related tasks can only be managed by very well organized knowledge acquisition on all REPPs' design equations and models. The proposed MOPs need to be solved with one or more multiobjective algorithm, such as Multi-objective Evolutionary Algorithms (MOEAs). In this respect, the first aim of this research study is to start gathering knowledge on the REPPs' MOPs. The second aim of this study is to gather detailed information about all MOEAs and available free software tools for their development. The main contribution of this research is the initialization of a proposed multi-objective evolutionary algorithm knowledge acquisition system for renewable energy power plants (MOEAs-KAS-FREPPs) (research and development loopwise process: develop, train, validate, improve, test, improve, operate, and improve). As a simple representative example of this knowledge acquisition system research with two selective and elective proposed standard objectives (as test objectives) and eight selective and elective proposed standard constraints (as test constraints) are generated and applied as a standardized MOP for a virtual small hydropower plant design and investment. The maximization of energy generation (MWh) and the minimization of initial investment cost (million €) are achieved by the Multi-objective Genetic Algorithm (MOGA), the Niched Sharing Genetic Algorithm/Non-dominated Sorting Genetic Algorithm (NSGA-I), and the NSGA-II algorithms in the Scilab 6.0.0 as only three standardized MOEAs amongst all proposed standardized MOEAs on two desktop computer configurations (Windows 10 Home 1709 64 bits, Intel i5-7200 CPU @ 2.7 GHz, 8.00 GB RAM with internet connection and Windows 10 Pro, Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz, 6,00 GB RAM with internet connection). The algorithm run-times (computation time) of the current applications vary between 20.64 and 59.98 seconds.S

    Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey

    Get PDF
    Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search techniques that have been extensively used to solve difficult problems in a wide variety of disciplines. However, they can be very demanding in terms of computational resources. Parallel implementations of MOEAs (pMOEAs) provide considerable gains regarding performance and scalability and, therefore, their relevance in tackling computationally expensive applications. This paper presents a survey of pMOEAs, describing a refined taxonomy, an up-to-date review of methods and the key contributions to the field. Furthermore, some of the open questions that require further research are also briefly discussed

    A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems

    Get PDF
    The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a non-elitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In the original CMA-PAES, a solution is selected as a parent for the next population using an elitist adaptive grid archiving (AGA) scheme derived from the Pareto Archived Evolution Strategy (PAES). In contrast, a multi-tiered AGA scheme to populate the archive using an adaptive grid for each level of non-dominated solutions in the considered candidate population is proposed. The new selection scheme improves the performance of the CMA-PAES as shown using benchmark functions from the ZDT, CEC09, and DTLZ test suite in a comparison against the (μ+λ) μ λ Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES). In comparison with MO-CMA-ES, the experimental results show that the proposed algorithm offers up to a 69 % performance increase according to the Inverse Generational Distance (IGD) metric

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Parallel evolutionary algorithms for scheduling on heterogeneous computing and grid environments

    Get PDF
    This thesis studies the application of sequential and parallel evolutionary algorithms to the scheduling problem in heterogeneous computing and grid environments, a key problem when executing tasks in distributed computing systems. Since the 1990's, this class of systems has been increasingly employed to provide support for solving complex problems using high-performance computing techniques. The scheduling problem in heterogeneous computing systems is an NP-hard optimization problem, which has been tackled using several optimization methods in the past. Among many new techniques for optimization, evolutionary computing methods have been successfully applied to this class of problems. In this work, several evolutionary algorithms in their sequential and parallel variants are specically designed to provide accurate solutions for the problem, allowing to compute an eficient planning for heterogeneous computing and grid environments. New problem instances, far more complex than those existing in the related literature, are introduced in this thesis in order to study the scalability of the presented parallel evolutionary algorithms. In addition, a new parallel micro-CHC algorithm is developed, inspired by useful ideas from the multiobjective optimization field. Eficient numerical results of this algorithm are reported in the experimental analysis performed on both well-known problem instances and the large instances specially designed in this work. The comparative study including traditional methods and evolutionary algorithms shows that the new parallel micro-CHC is able to achieve a high problem solving eficacy, outperforming previous results already reported for the problem and also having a good scalability behavior when solving high dimension problem instances.In addition, two variants of the scheduling problem in heterogeneous environments are also tackled, showing the versatility of the proposed approach using parallel evolutionary algorithms to deal with both dynamic and multi-objective scenarios.Esta tesis estudia la aplicación de algoritmos evolutivos secuenciales y paralelos para el problema de planicación de tareas en entornos de cómputo heterogéneos y de computación grid. Desde la década de 1990, estos sistemas computacionales han sido utilizados con éxito para resolver problemas complejos utilizando técnicas de computación de alto desempeo. El problema de planificación de tareas en entornos heterogéneos es un problema de optimización NP-difícil que ha sido abordado utilizando diversas técnicas. Entre las técnicas emergentes para optimización combinatoria, los algoritmos evolutivos han sido aplicados con éxito a esta clase de problemas. En este trabajo, varios algoritmos evolutivos en sus versiones secuenciales y paralelas han sido especificamente diseados para alcanzar soluciones precisas para el problema de planicación de tareas en entornos de heterogéneos, permitiendo calcular planificaciones eficientes para entornos que modelan clusters de computadores y plataformas de computación grid. Nuevas instancias del problema, con una complejidad mucho mayor que las previamente existentes en la literatura relacionada, son presentadas en esta tesis con el objetivo de analizar la escalabilidad de los algoritmos evolutivos propuestos. Complementariamente, un nuevo método, el micro-CHC paralelo es desarrollado, inspirado en ideas ítiles provenientes del área de optimización multiobjetivo. Resultados numéricos precisos y eficientes se reportan en el análisis experimental realizado sobre instancias estándar del problema y sobre las nuevas instancias especificamente diseñadas en este trabajo.El estudio comparativo que incluye a métodos tradicionales para planificación de tareas, los nuevos métodos propuestos y algoritmos evolutivos previamente aplicados al problema, demuestra que el nuevo micro-CHC paralelo es capaz de alcanzar altos valores de eficacia, superando a los mejores resultados previamente reportados en la literatura del área y mostrando un buen comportamiento de escalabilidad para resolver las instancias de gran dimensión. Además, dos variantes del problema de planificación de tareas en entornos heterogéneos han sido inicialmente estudiadas, comprobándose la versatilidad del enfoque propuesto para resolver las variantes dinámica y multiobjetivo del problema
    corecore