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Abstract

Optimisation of the operation of water distribution systems has been an active research field for almost half a 

century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water 

quality management to ensure that standards at customer nodes are met. This paper provides a systematic 

review by bringing together over two hundred publications from the past three decades, which are relevant to 

operational optimisation of water distribution systems, particularly optimal pump operation, valve control 

and system operation for water quality purposes of both urban drinking and regional multiquality water 

distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred 

publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision 

variables, solution methodologies used and other details. Research challenges in terms of simulation models, 

optimisation model formulation, selection of optimisation method and postprocessing needs have also been 

identified.

Keywords: Water distribution systems; optimisation; literature review; pump operation; water quality; valve 

control

1 Introduction

Water distribution systems (WDSs) represent a vast infrastructure worldwide, which is critical for 

contemporary human existence from all social, industrial and environmental aspects. As a consequence, 

there is pressure on water organisations to provide customers with a continual water supply of the required 

quantity and quality, at a required time, subject to a number of delivery requirements and operational 

constraints. A level of flexibility exists in the WDSs, which enables the supply of required water under 

different operational schedules, more or less economically. This flexibility gives opportunity for optimisation 

of WDS operation.
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Since the 1970s, substantial research has addressed the optimisation of operation of WDSs (Ormsbee and 

Lansey 1994) with two main areas of focus. The first area includes pump operation, as pump operating costs 

constitute the largest expenditure for water organisations worldwide (Van Zyl et al. 2004). Optimal operation 

of pumps is often formulated as a cost optimisation problem (Savic et al. 1997). The second area includes 

optimisation of water quality across the water distribution network. This research area emerged in the 1990s 

following the U.S. Environmental Protection Agency (EPA) promulgating “rules requiring that water quality 

standards must be satisfied at consumer taps rather than at treatment plants” (Ostfeld 2005).

Development in the use of various methods to optimise operation of WDSs is not only an interesting subject 

for research, but also very complex. Initially, these techniques included deterministic methods, such as 

dynamic programming (DP) (Dreizin 1970; Sterling and Coulbeck 1975a; Zessler and Shamir 1989), 

hierarchical control methods (Coulbeck et al. 1988a; Coulbeck et al. 1988b; Fallside and Perry 1975; Sterling 

and Coulbeck 1975b), linear programming (LP) (Alperovits and Shamir 1977; Schwarz et al. 1985) and 

nonlinear programming (NLP) (Chase and Ormsbee 1989). Since the 1990s, metaheuristic algorithms, such 

as genetic algorithms, simulated annealing, to name a few, have been applied to the optimal operation of 

WDSs with increased popularity. Their attractiveness for this type of optimisation is due to their potential to 

solve nonlinear, nonconvex, discrete problems for which deterministic methods incur difficulty (Maier et al. 

2014; Nicklow et al. 2010). In recent years however, deterministic methods have started to reappear, because 

they are more computationally efficient, thus more suitable for real-time control, as well as other applications 

(Creaco and Pezzinga 2015). An example of the former is Derceto Aquadapt, a commercial software used for 

real-time optimisation of valve and pump schedules (Derceto 2016), which uses LP as the base algorithm.

2 Aim, scope and structure of the paper

The aim of this paper is to provide a comprehensive and systematic review of publications for operational 

optimisation of WDSs since the end of the 1980s to nowadays to contribute to the existing review literature 

(Lansey 2006; Ormsbee and Lansey 1994; Walski 1985). Publications included in this review address 

optimal pump operation, valve control and optimal system operation for water quality purposes of both urban 

drinking and regional multiquality WDSs.

The paper consists of two parts: (i) the main review and (ii) an appendix in a tabular form (further referred to 

as the table), each having different structure and purpose. The main text is structured according to 

publications’ application areas (pump, water quality and valve control) and general classification. This 

classification is used because it captures all the main aspects of an operational optimisation problem 

answering the questions: what is optimised (Section 4.1), how is the problem defined (Section 4.2), how is 

the problem solved (Section 4.3) and what is the application (Section 4.4)? The purpose of this part of the 

paper is to provide current status, analysis and synthesis of the current literature, and suggest future research 

directions.
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The table forms a significant part of the paper referring to over a hundred publications and is structured 

chronologically. It contains detailed classification of each paper, including optimisation models (i.e., 

objective functions, constraints, decision variables), water quality parameters, network analyses and 

optimisation methods used, as well as other relevant information. The purpose of the table is to provide an 

exhaustive list of publications on the topic (as much as feasible) detailing comprehensive and thorough 

information, so it could be used as a single reference point to identify one’s papers of interest in a timely 

manner. Therefore, it represents a unique and important contribution of this paper.

The structure of the paper is as follows:

 The main review: (3) Application areas, (4) General classification of reviewed publications, (5) Future 

research, (6) Summary and conclusion, (7) List of terms, (8) List of abbreviations.

 The table: (9) Appendix.

3 Application areas

3.1 Pump operation

Typically, electricity consumption is one of the largest marginal costs for water utilities. The price of 

electricity has been rising globally, making it a dominant cost in operating WDSs. Pump operation is 

optimised in order to achieve a minimal amount of energy consumed by pumps. Pumps are controlled either 

explicitly by times when pumps operate (so called pump scheduling), or implicitly by pump flows (Bene et 

al. 2013; Nitivattananon et al. 1996; Pasha and Lansey 2009; Zessler and Shamir 1989), pump pressures, 

tank water trigger levels (Broad et al. 2010; Van Zyl et al. 2004) or pump speeds for variable speed pumps 

(for example Hashemi et al. (2014), Ulanicki and Kennedy (1994), Wegley et al. (2000)). These controls are 

specified as decision variables and their formulations are reviewed in Ormsbee et al. (2009). The most 

frequently used is explicit pump scheduling, which can be specified by (i) on/off pump statuses during 

predefined equal time intervals (for example Baran et al. (2005), Ibarra and Arnal (2014), Mackle et al. 

(1995), Salomons et al. (2007)), (ii) length of the time (in hours) of pump operation (Brion and Mays 1991; 

Lopez-Ibanez et al. 2008), (iii) start/end run times of the pumps (Bagirov et al. 2013). The former, although 

the most frequently used, requires a large number of decision variables for (real-world) WDSs with 

numerous pump stations, which increases the size of the search space. The latter two methods reduce the 

number of variables hence decrease the size of the search space. This reduced search space helps the 

optimisation algorithm to quickly achieve a satisfactory pump schedule. Concerning the methods for search 

space reduction, an open question is how to perform it without compromising the fidelity of the optimisation 

model and undue simplification of the real system.

Pump operating costs comprise of costs for energy consumption due to pump operation and costs due to the 

maintenance of pumps. Energy consumption normally incurs energy consumption charge and demand 

charge. The former is based on the kilowatt-hours of electric energy consumed by pumps during the billing 

period (Ormsbee et al. 2009) and is often the only component of operating costs used in the pump 
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optimisation problem (for example Jamieson et al. (2007), Kim et al. (2007), Ulanicki et al. (1993)). Demand 

charge is usually based on the peak energy consumption during a specific time period (Ormsbee et al. 2009), 

and often determined over a time scale much longer (weeks-months) than the time period considered for 

optimisation (hours-days). As it is not easily incorporated in the optimisation model (McCormick and Powell 

2003), it has been included as a constraint (Gibbs et al. 2010a; Selek et al. 2012) or as an additional objective 

besides pump operating costs (Baran et al. 2005; Kougias and Theodossiou 2013; Sotelo and Baran 2001). 

Whether demand charges are included as a constraint or an objective depends largely on the optimisation 

technique selected for solving the pump operation problem. The shape of the resulting solution space (i.e., 

the solution neighbourhood structure) or the ease with which an additional constraint is incorporated 

determines the best optimisation method to use. The approach for including maximum demand charges into 

overall costs, which takes into account the uncertainty in the future water demand, makes an already difficult 

problem of pump operation planning an even greater challenge. 

Similar to demand charges, pump maintenance costs are also difficult to quantify. They are usually included 

using a surrogate measure such as the number of pump switches (Lopez-Ibanez 2008). It is assumed that a 

reduction in the number of pump switches results in the reduction of the pump maintenance costs (Lansey 

and Awumah 1994). The number of pump switches has been considered as a constraint (Boulos et al. 2001; 

Lansey and Awumah 1994; Lopez-Ibanez et al. 2008; Selek et al. 2012; Van Zyl et al. 2004), alternatively, 

pump energy costs and pump maintenance costs have been considered as a two-objective optimisation 

problem (Bene et al. 2013; Kelner and Leonard 2003; Lopez-Ibanez et al. 2005; Savic et al. 1997). The 

advantage of considering pump switches as an objective over incorporating them as a constraint is in the 

ability to investigate a complete trade-off between maintenance and other costs when the former is selected. 

However, an open research question with regard to pipe maintenance costs within an operational 

optimisation problem relates to whether there are more appropriate expressions for characterising this type of 

wear and tear costs.

A multi-objective approach has been increasingly applied (Figure 1) to pump optimisation problems to 

include considerations other than costs. Other objectives considered, apart from demand charge and pump 

maintenance costs mentioned above, were the difference between initial and final water levels in storage 

tanks (Baran et al. 2005; Sotelo and Baran 2001), the quantity of pumped water (Kougias and Theodossiou 

2013), greenhouse gas (GHG) emissions associated with pump operations (Stokes et al. 2015a,b) and 

operational reliability (Odan et al. 2015). Most recently, water quality has been traded off against pump 

operating costs (Arai et al. 2013; Kurek and Ostfeld 2013; Kurek and Ostfeld 2014; Mala-Jetmarova et al. 

2014) with the finding that those objectives are conflicting. Similarly, water losses due to leakage and pump 

operating costs were identified as conflicting objectives (Giustolisi et al. 2012). Minimisation of just 

pumping costs moves the pumping to the night time when the pressures in the system are higher, producing 

increased leakage. When water losses are introduced as an objective, more pumping occurs during the day 

time and leakage reduces (Giustolisi et al. 2012).
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Figure 1: Papers (from the appendix table) by year and optimisation approach

While the single-objective approach benefits from being able to identify one best solution, which is then 

implemented, multi-objective methods normally produce a set of trade-off (Pareto) solutions, which requires 

an additional step to select only one of the solutions. Selecting a single solution from a potentially large non-

dominated set is likely to be difficult for any decision maker. This subsequent selection process makes the 

multi-objective approach less desirable by the operators who often require a clear decision to implement. 

This mismatch leads to the research question of the most promising way for selecting the best solution from 

the Pareto set, which may involve providing the decision makers with a globally representative subset of the 

non-dominated set that is sufficiently small to be tractable.

3.1.1 Real-time control

Time is an important factor for industrial applications. In real-time planning and control of WDSs, there is 

need for optimal schedules to be found in a timely manner based on demand forecasts and be implemented 

via the SCADA (Supervisory Control and Data Acquisition) system. Evidence from the literature suggests 

that computational efficiency of metaheuristic algorithms in conjunction with the network simulator, such as 

EPANET, for large WDSs is not sufficient, however.

Several authors have investigated how to decrease computational effort of the network simulator and/or an 

optimisation algorithm to provide an optimal solution in real-time. Time consuming extended period 

simulations (EPS) could be replaced with surrogate models such as artificial neural networks (ANN) (Broad 

et al. 2010), interpretive structural modelling (ISM) (Arai et al. 2013) or reduced (i.e., skeletonised) models 

(RM) (Shamir and Salomons 2008). ANNs, which are applied most frequently, were used to determine real-

time, near optimal control of WDSs by integrating with GA incorporating demand forecasting (based on 

seasonal, weekly and daily periodic components) and operating continually based on SCADA data and 

demand forecast updates (Martinez et al. 2007; Rao and Alvarruiz 2007; Rao and Salomons 2007; Rao et al. 

2007; Salomons et al. 2007; Shamir et al. 2004). Surrogate models can be developed prior to the optimisation 
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run, in which case optimisation is not gated by the time consuming network simulator, or they can be 

validated within the optimisation loop where the network simulator is employed sparingly. An open question 

is how to control the error of the surrogate model to ensure that the solution found is still optimal when the 

full network simulator is employed to validate it. 

Optimisation methods used for real-time control include LP (Jowitt and Germanopoulos 1992; Pasha and 

Lansey 2009), NLP (Cembrano et al. 2000), progressive optimality algorithm combined with heuristics 

(Nitivattananon et al. 1996), adaptive search algorithm (ASA) (Pezeshk and Helweg 1996), GA integrated 

with ANN (Shamir et al. 2004), and LP combined with a greedy algorithm (LPG) (Giacomello et al. 2013). 

Real-time control depends crucially not only on the ability of the optimisation algorithm to find a good 

solution in near real-time, but also on the effectiveness of the model used to forecast future state of the 

system for an operational decision window. These aspects make real-time pump control much more difficult 

problem to solve as opposed to when optimisation is used for planning purposes.

3.2 Water quality

3.2.1 Urban drinking water distribution systems

There does not seem to be a unique optimisation model for the operation of drinking WDSs. The following 

three basic single-objective models exist in the literature. The first optimisation model minimises pump 

operating time/costs (Dandy and Gibbs 2003; Goldman and Mays 1999; Sakarya and Mays 1999; Sakarya 

and Mays 2000; Sakarya and Mays 2003) with addition of water treatment costs (Ulanicki and Orr 1991), 

costs of water at sources (Brdys et al. 1995) and utility turnout costs (Murphy et al. 2007) subject to water 

quality and other constraints. The second optimisation model minimises the (costs of) total disinfectant mass 

dose (Boccelli et al. 1998; Fanlin et al. 2013; Prasad et al. 2004; Rico-Ramirez et al. 2007; Tryby et al. 

2002), which may consider the number and locations of booster disinfection stations. The third optimisation 

model minimises disinfectant concentration deviations at customer demand nodes from desired values 

(Goldman et al. 2004; Kang and Lansey 2009; Munavalli and Kumar 2003; Propato and Uber 2004a; Propato 

and Uber 2004b; Sakarya and Mays 1999; Sakarya and Mays 2000; Sakarya and Mays 2003). These models 

are sometimes combined in various ways (Biscos et al. 2003; Biscos et al. 2002; Gibbs et al. 2010a; Ostfeld 

and Salomons 2006). 

What is the difference in the solution obtained when applying those models? Sakarya and Mays (2000) 

considered the first and third optimisation model with the following outcomes. Different pump schedules 

were found using these models. Optimal solutions for the first model considering either pump operating time 

or pump operating costs were very similar. For the third model considering concentration deviations, 

nonetheless, the optimal solution had higher value of pump operating time/costs than for the first model. The 

explanation provided was that the objective function implemented in the third model (i.e. concentration 

deviations) does not force the algorithm to reduce pump operating time/costs further after all of the 
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constraints are satisfied. Ostfeld and Salomons (2006) discovered that pumping costs are significantly 

reduced if water quality is absent from the optimisation model and conversely, that the best water quality 

outcome corresponds to the highest pump operating costs. This competing nature of tradeoff between water 

quality and operating costs was confirmed by Arai et al. (2013), and Kurek and Ostfeld (2014).

Those models were improved by the incorporation of control valves to direct disinfectant laden-water where 

required (Kang and Lansey 2009; Kang and Lansey 2010) and by inclusion of uncertainties on demands, 

pipe roughness and chemical reactions of the disinfectant (Rico-Ramirez et al. 2007). Furthermore, a multi-

objective approach was applied with additional objectives being the number of instances of not meeting 

quality requirements (Ewald et al. 2008; Kurek and Brdys 2006), the costs of tanks (Kurek and Ostfeld 

2013), and the number of polluted nodes and operational interventions (OIs) as responses to WDS 

contamination (Alfonso et al. 2010).

Water quality parameters (such as chlorine) were typically modelled as non-conservative using first order 

decay kinetics, except for Murphy et al. (2007) and Prasad and Walters (2006), who used water age as a 

substitute for water quality. Optimisation methods used were mainly LP and mixed integer nonlinear 

programming (MINLP) (for example Arai et al. (2013), Biscos et al. (2003), Boccelli et al. (1998)) and 

metaheuristic algorithms (GA, NSGA-II, SPEA2) linked with a network simulator EPANET (for example 

Alfonso et al. (2010), Dandy and Gibbs (2003)). Most recently in order to reduce computational effort, 

EPANET was replaced by the ISM (Arai et al. 2013) and ANN (Wu et al. 2014b).

Introduction of water quality considerations increases the complexity of the optimisation considerably. This 

increased complexity is caused not only by the more complex simulations required to predict the temporal 

and spatial distribution of a variety of constituents within a distribution system, but also by the requirement 

to run shorter time step water quality computations. Furthermore, the ability to model multiple constituents 

throughout the water distribution system via the EPANET Multi-Species Extension, EPANET-MSX (Shang 

et al. 2016), also comes with a further loss in computational efficiency. However, these complex simulations 

are sometimes necessary as network operational conditions often impact on various water quality 

constituents, e.g., discolouration that occurs due to erosion of particulate material layers. Consequently, there 

is a need to develop even more computationally efficient optimisation methods that can be run in real-time, 

which take complex water quality behaviour into account.

3.2.2 Regional multiquality water distribution systems

Multiquality WDSs are “systems in which waters of different qualities are taken from sources, possibly 

treated, conveyed and supplied to the consumers” (Ostfeld and Salomons 2004). They deliver water to more 

than one customer group, who have different water quality requirements. The first optimisation models for 

multiquality WDSs considered pump operating costs only (Mehrez et al. 1992; Percia et al. 1997).The 

system operating costs were later extended to also include costs of water at sources (Cohen et al. 2000b), 
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water treatment costs (Ostfeld and Shamir 1993a; Ostfeld and Shamir 1993b), water conveyance costs 

(Cohen et al. 2000a) and yield reduction costs due to watering crops with low quality water (Cohen et al. 

2000a; Cohen et al. 2000c). These costs were combined into one objective, with water quality requirements 

at customer demand nodes included as constraints.

Subsequent studies performed analyses to explore sensitivity of the solution to modifications of model data 

and constraints (Cohen et al. 2004; Cohen et al. 2009; Ostfeld 2005; Ostfeld and Salomons 2004) and to 

compare performance of different optimisation methods (Cohen et al. 2003). The emphasis of these analyses 

was to investigate the impact of individual operating costs on total system costs and the relationship between 

different customer groups, such as drinking and irrigation.

Water quality parameters (such as salinity, magnesium, sulphur) were typically modelled as conservative, 

except for Ostfeld and Shamir (1993b), who modelled non-conservative parameters in reservoirs using first 

order decay. Additionally, Ostfeld et al. (2011) included chemical water instability, which can result from 

mixing desalinated water with surface or groundwater, using calcium carbonate precipitation potential 

(CCPP). Optimisation problems in the above papers were solved as single-objective. Most recently, Mala-

Jetmarova et al. (2014) included water quality as an additional objective into an optimisation model and 

explored tradeoffs between water quality and pumping costs, confirming results of Arai et al. (2013), and 

Kurek and Ostfeld (2014) indicating conflicting relationship between water quality and pumping cost 

objectives. Interestingly, when two water quality objectives (each representing a separate water quality 

parameter) are incorporated together with a pumping cost optimisation into a model, the relationship between 

water quality and pumping costs is not necessarily conflicting (Mala-Jetmarova et al. 2015). This hypothesis 

represents a further research challenge to be tested on a different set of realistic case studies of various 

configurations to ascertain whether the objectives are conflicting or they can be somehow integrated, leading 

to reduced optimisation problem complexity.

3.3 Valve control

Valve controls were used in conjunction with both optimal pump operation and optimal system operation for 

water quality purposes. These valve controls were implemented in optimisation models as decision variables. 

In regards to minimisation of pump operating costs, those decision variables were represented by continuous 

valve statuses (Biscos et al. 2002; Biscos et al. 2003; Ulanicki and Orr 1991; Ulanicki et al. 2007), binary 

valve statuses (Biscos et al. 2002; Biscos et al. 2003; Giustolisi et al. 2012; Jamieson et al. 2007), valve 

positions (Ulanicki and Kennedy 1994; Wu et al. 2014a) or valve openings/opening ratios (Cembrano et al. 

2000; Cohen et al. 2000c; Martinez et al. 2007; Ostfeld and Salomons 2004; Rao et al. 2007; Rao and 

Salomons 2007), flows through valves (Carpentier and Cohen 1993; Jowitt and Germanopoulos 1992), valve 

headlosses or headloss coefficients (Cohen et al. 2000b; Cohen et al. 2009; Kelner and Leonard 2003), and 

pressure reducing valve (PRV) settings (Murphy et al. 2007; Salomons et al. 2007; Shamir and Salomons 

2008).
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In water quality optimisation models, valves were used, via their binary statuses (open or closed), to improve 

water quality at customer nodes by rerouting flows (Prasad and Walters 2006) and to minimise pollutant 

contamination across a network (Alfonso et al. 2010). Additionally, percentages/degrees of valve closures 

(Kang and Lansey 2009; Kang and Lansey 2010) or openings (Ostfeld and Salomons 2006) were used to 

optimise chlorine levels across a network.

In general, the pumping flow is often the main decision variable used in operational optimisation of WDSs. 

Valves often play an indirect role in meeting the constraints, such as balancing of levels in interconnected 

reservoirs (e.g., Ulanicki et al. 2007) and/or pressure regulation (e.g., to control leakage, Giustolisi et al. 

2015). However, in water quality optimisation, they may also be one of the main decision variables.

4 General classification of reviewed publications

Based on the selected literature analysis, the following are the four main criteria for the classification of 

operational optimisation for WDSs: (i) application area, (ii) optimisation model, (iii) solution methodology 

and (iv) test network.

4.1 Application area

 As described in Section 3, there are three application areas: pump operation (Section 3.1), water quality 

management (Section 3.2) and valve control (Section 3.3). Figure 2 displays distribution of those application 

areas across the papers analysed (and listed in the appendix table) as follows:

 The largest portion of papers (41%) is concerned with optimisation of pump operation only.

 Optimisation of pump operation combined with valve control, water quality, or both valve control and 

water quality are represented quite evenly by 15%, 15% and 11% of papers, respectively.

 Optimisation of water quality exclusive of any other operational controls (i.e. pumps and/or valves) is 

addressed in 15% of papers.

 The smallest portion of papers (3%) is concerned with optimisation for water quality purposes combined 

with valve control.

The above apparent prevalence of purely pump operation focused papers is not surprising and occurs mostly 

due to historical reasons. Namely, following the first studies focusing on WDS design optimisation, the idea 

of using optimisation in operational studies (i.e., for cost reduction by manipulating pump flows over time) 

was the next one to be addressed by the research community. The introduction of water quality criteria, with 

or without valve control for pressure management (e.g., for leakage control) or water quality manipulation, 

appeared much later in the literature. Lately, more emphasis was put on holistic assessment of WDS 

operation, and thanks to more sophisticated simulation and optimisation methods having been introduced.
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Figure 2: Papers (from the appendix table) by application areas

4.2 Optimisation model

Regarding optimisation models, each is mathematically defined by three types of components: objectives, 

constraints and decision variables. Figure 3 indicates how many of these components are included in the 

optimisation models (of papers analysed in the appendix table), which indicates the degree of complexity of 

the formulation. Note that not all reviewed papers include mathematical formulations of an optimisation 

model used. Therefore, our assessment is limited to our interpretation of the provided information in the 

publications, where explicit formulation was partially presented or missing altogether.

 The number of objectives included in optimisation models ranges from one to four, with a vast majority 

of models (84%) being single-objective. The proportion of multi-objective optimisation models, including 

2, 3 or 4 objectives is only 8%, 6% and 2%, respectively.

 The number of constraints incorporated in optimisation models ranges from one to nine. The largest 

proportion of optimisation models uses 3 or 4 constraints, or 29% and 22%, respectively. The proportion 

of optimisation models using 1-2 and 5-9 constraints totals to 49% (see Figure 3(b) for more details). 

Please note that hydraulic constraints (such as conservation of mass of flow, conservation of energy, and 

conservation of mass of constituent) were not included in these statistics as they are normally included as 

implicit constraints and forced to be satisfied by WDS modelling tool, such as EPANET.

 The number of types of a decision (i.e. control) variable included in optimisation models ranges from one 

to seven. A majority of optimisation models, 41% and 33%, uses one or two types of a decision variable, 

respectively. Use of more than two types of a decision variable is less frequent and the number of such 

models tends to decrease with the increasing number of decision variables used.
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Figure 3: Optimisation models (of papers from the appendix table) by: (a) number of objectives, (b) number 

of constraints, (c) number of types of a decision variable, in an optimisation model

As indicated, the prevailing use of single-objective optimisation is probably caused by the preference to 

arrive at a single solution, which can be implemented by WDS operators. On the other hand, the number of 

constraints used in the formulation of the problem depends on the complexity of the system and the number 

of operational criteria expressed as constraints rather than objectives. Finally, the number and types of 

decision variables depend on what is controllable (what can be changed) in WDS under consideration. Two 

related unresolved research questions are: (i) how to select the best formulation for the problem at hand; and 

(ii) how sensitive the ultimate selection of solution(s) is to the problem formulation selected (Maier et al., 

2014).

4.2.1 General optimisation model

A general multi-objective optimisation model for optimal operation of a WDS can be formulated as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝑓1(𝑥), 𝑓2(𝑥), …, 𝑓𝑛(𝑥))                                                            (1)

subject to:

𝑎𝑖(𝑥) = 0,     𝑖 ∈ 𝐼 = {1, …,𝑚},     𝑚 ≥ 0                                                     (2)

𝑏𝑗(𝑥) ≤ 0,     𝑗 ∈ 𝐽 = {1, …,𝑛},     𝑛 ≥ 0                                                       (3)

𝑐𝑘(𝑥) ≤ 0,     𝑘 ∈ 𝐾 = {1, …,𝑝},     𝑝 ≥ 0                                                     (4)

where Equation (1) represents objective functions to be minimised, Equations (2)-(4) three types of a 

constraint, while  represents decision variables (for details, see Table 1).𝑥
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Table 1: Components of a general optimisation model

Optimisation model 
component

Description Reference (an example)

Pump operating costs, consisting of energy 
consumption charge and demand charge

Kougias and Theodossiou (2013)

Pump maintenance costs, represented, for 
example, by the number of pump switches

Lopez-Ibanez et al. (2005)

GHG emissions associated with pump operation Stokes et al. (2015a)
Water treatment costs Cohen et al. (2009), Ostfeld et al. (2011)
Disinfectant dosage mass or costs Rico-Ramirez et al. (2007)
Water quality deviations at customer demand 
nodes

Propato and Uber (2004a,b)

Pressure deficit at customer demand nodes Min/max pressure at nodes only as a 
constraint, Ostfeld and Tubaltzev (2008)

Objective functions
𝑓1(𝑥),
𝑓2(𝑥),
…,
𝑓𝑛(𝑥)

Other operational objectives, for example, cost 
of water

Ostfeld and Salomons (2004)

Hydraulic constraints given by physical laws of 
fluid flow in a pipe network: (i) conservation of 
mass of flow, (ii) conservation of energy, (iii) 
conservation of mass of constituent

Rossman (2000)

System constraints given by limitations and 
operational requirements of a WDS, for 
example, minimum and maximum water levels 
at storage tanks, water deficit/surplus at storage 
tanks at the end of the simulation period

Lopez-Ibanez et al. (2005)

Constraints
𝑎𝑖(𝑥) = 0,
𝑏𝑖(𝑥) ≤ 0,

, 𝑐𝑖(𝑥) ≤ 0
respectively

Constraints on decision variables , for 𝑥
example, limits on pump schedules/speeds, the 
number of pump switches or disinfectant doses

Ghaddar et al. (2014) (limits on pumps), 
Propato and Uber (2004a,b) (limits on 
disinfectant doses)

Pumps: either pump schedules, pump start/end 
run times, pump flows, pump heads/pressures, 
pump speeds or storage tank water trigger levels

Lopez-Ibanez et al. (2005) (schedules), 
Bagirov et al. (2013) (times), Bene et al. 
(2013) (flows), Price and Ostfeld (2014) 
(heads), Kurek and Ostfeld (2014) 
(speeds), Broad et al. (2010) (trigger 
levels)

Valves: either valve flows, headlosses or 
opening ratios

Carpentier and Cohen (1993) (flows), 
Cohen et al. (2009) (headlosses and ratios)

Decision variables
 to control𝑥

Water quality: either explicitly by disinfectant 
dosage rates (urban drinking WDSs) or 
implicitly by pumps drawing water from 
different water sources (urban drinking and 
regional multiquality WDSs)

Propato and Uber (2004a,b) (explicitly by 
disinfectant doses), Ostfeld et al. (2011) 
(implicitly by pumps)

Table 1 provides a generic set of components used for formulating an optimisation problem involving 

operational management of a WDS. Particular circumstances being considered in different case studies may 

warrant only a portion of those components to be used. 

4.3 Solution methodology

Optimisation methods have developed significantly since the 1970s. Deterministic methods used initially 

(Brion and Mays 1991; Carpentier and Cohen 1993; Coulbeck et al. 1988a; Coulbeck et al. 1988b; Lansey 

and Awumah 1994; Ulanicki and Kennedy 1994; Ulanicki et al. 1993; Zessler and Shamir 1989) started 

being supplemented by metaheuristics during the mid 1990s (Figure 4). The first of these methods 

introduced was a genetic algorithm (GA) (Boulos et al. 2001; Lingireddy and Wood 1998; Mackle et al. 

1995; Moradi-Jalal et al. 2004; Wu et al. 2014a), which was also used with modifications (Bene et al. 2010; 
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Selek et al. 2012; Wu 2007) or in combination with local search methods (i.e. hybrid methods, Figure 4) 

(Savic et al. 1997; Van Zyl et al. 2004) to increase its efficiency. Other metaheuristic algorithms included 

particle swarm optimisation (PSO) (Wegley et al. 2000), ant colony optimisation (ACO) (Hashemi et al. 

2014; Lopez-Ibanez et al. 2008; Ostfeld and Tubaltzev 2008), nondominated sorting genetic algorithm II 

(NSGA-II) (Prasad et al. 2004), strength Pareto evolutionary algorithm 2 (SPEA2) (Kurek and Ostfeld 2013), 

harmony search algorithm (HSA) (Kougias and Theodossiou 2013), limited discrepancy search (LDS) 

(Ghaddar et al. 2014) and other multi-objective algorithms (Baran et al. 2005).

Figure 4: Optimisation methods (of papers from the appendix table) by year

Recent advancements show, nevertheless, that these metaheuristics linked with a network simulator (i.e. 

EPANET) may prevent implementation for large WDSs in real-time, due to considerable computational 

effort required (Giacomello et al. 2013). For this reason, more efficient deterministic methods have been 

increasingly applied (Arai et al. 2013; Bagirov et al. 2008; Bagirov et al. 2013; Bagirov et al. 2012; Bene et 

al. 2013; Gleixner et al. 2012; Goryashko and Nemirovski 2014; Kim et al. 2015; Kim et al. 2007; Price and 

Ostfeld 2013a; Price and Ostfeld 2013b; Price and Ostfeld 2014; Reca et al. 2014; Ulanicki et al. 2007). 

Parallel programming techniques (Ibarra and Arnal 2014; Wu and Zhu 2009) are also used to reduce 

computation time. However, even with parallel programming techniques and more efficient deterministic 

optimisation methods, WDS simulations may still be computationally prohibitive especially as the fidelity of 

the model and the number of decision variables increase.

Further efforts to improve computational efficiency of various optimisers led to the development and 

integration of surrogate models (metamodels) within optimisation algorithms. Surrogate models are efficient 

tools used to replace and approximate network simulations which can be very computationally expensive 

and/or may become an obstacle in real-time implementations. To date, two types of a surrogate model were 

applied to optimisation of WDS operation being artificial neural networks (ANN) (Broad et al. 2005; Broad 

et al. 2010; Martinez et al. 2007; Rao and Alvarruiz 2007; Rao and Salomons 2007; Rao et al. 2007; 
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Salomons et al. 2007; Shamir et al. 2004) and interpretive structural modelling (ISM) (Arai et al. 2013).

ANNs, which are by far the most commonly used surrogate models, are based upon real neurological 

structures and can be represented as directed graphs. They consist of nodes interconnected by links and are 

commonly arranged into an input layer (representing model inputs), multiple intermediate layers and an 

output layer (representing model outputs). They do not approximate all simulation mechanisms of a network 

model, but only model inputs such as decision (control) variables and model outputs such as state variables 

(Broad et al. 2010). In contrast, ISM captures an underlying hierarchical structure of the system and 

identifies relationships (direct or indirect) between its facilities. As such, it enables understanding of 

fundamental principles of complex systems such as WDSs. ISM is defined mathematically by a matrix and 

similarly to ANN they can be represented as a directed graph.

The choice of the solution methodology, and whether it incorporates the equations representing the 

behaviour of the real system directly in the formulation of the problem, or it uses a network simulator (with 

or without the use of a surrogate model to reduce the calls to the simulator), depends on the type of problem 

being considered, the level of expertise of the analyst and the familiarity with the particular method/tool. 

However, there is no clear justification provided in many of the papers as to why a particular methodology 

has been selected and/or why another methodology has not been tested. Quite often, this choice is based on 

the literature survey done by the authors of the paper, rather than on an objective comparison of the tests 

performed using implementations of two or more solution methodologies. Maier et al. (2015) stress that 

these aspects make it difficult to progress towards the development of meaningful guidelines for the 

application of different optimisation methods. Hence, an interesting research question for further studies 

would be how to select the best optimisation method for a particular WDS operational problem. This process 

would require a thorough comparison of a number of solution methodologies on a representative selection of 

problems as, for example, it has been done for multi-objective WDS design (Wang et al. 2015).

4.4 Test network

Large variety of test networks has been used in operational optimisation of WDSs. These networks vary in 

size and complexity, from small systems with one source, one pump and a few nodes (see for example, Bene 

and Hos (2012), Price and Ostfeld (2014)) to large real-world WDSs with multiple reservoirs, hundreds of 

pumps and thousands of nodes (see for example, Murphy et al. (2007)). Figure 5 categorises test networks 

used (in the papers listed in the appendix table) by network size, expressed in terms of the number of nodes 

within a network. Networks, for which the number of nodes can be identified from the paper or references 

provided, are included only. Figure 5 reveals that a majority of the networks used (80%) are limited in size to 

100 nodes, from which about one half of the networks (36%) includes only up to 20 nodes.
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Figure 5: Test networks (of papers from the appendix table) by network size

Figure 5 illustrates that similar to other problems in operations research literature, various WDS operational 

formulations and optimisation methods used have usually been assessed using computationally cheap, small 

networks to facilitate initial algorithm development and implementation. As real-world networks contain 

hundreds of thousand elements (including pumping stations, reservoirs and valves), a single EPS simulation 

can take minutes or even hours to execute even on powerful desktop computers. This extended time can 

become especially obstructive when real-time control is considered. Consequently, large networks are being 

simplified for the purpose of optimisation (Cembrano et al. 2000; Jowitt and Germanopoulos 1992; Ulanicki 

et al. 1993), or reduced (so called reduced models (RM)) (Shamir and Salomons 2008) by applying 

mathematical manipulation, such as the methodology proposed in Ulanicki et al. (1996).

Similar to network size, frequency of use of test networks varies considerably, as some networks have been 

used only once, while others quite frequently and by numerous authors. For example, there are two test 

networks, which have been used (in the papers listed in the appendix table) 10 or more times. The first is 

Anytown network (Walski et al. 1987) with 19 nodes (and 1 source, 1 pump station, 2 tanks), which was 

applied 10 times, and the second is EPANET Example 3 (USEPA 2013) with 92 nodes (and 2 sources, 2 

pump stations, 3 tanks), which was applied 14 times. Anytown is a hypothetical WDS, whereas EPANET 

Example 3 is based on a real WDS of Navato, California. The possible reasons for those networks being 

more popular than others is their data availability and their flexibility to be modified to suit a range of 

optimisation models inclusive of water quality considerations.

The similar situation with the lack of large and complex networks has been experienced by researchers 

working in the WDS design field, where there used to be a limited availability of realistically large 

benchmark problems for testing of optimisation algorithms. For that reason, a number of research groups 

have been working on development of either water distribution test networks (Jolly et al. 2014) or tools for 

automatic generation of such networks of varying size and levels of complexity (De Corte and Sörensen 

2014). An open question still remains, how these tools or benchmark networks can be adapted to the needs of 

operational optimisation of WDS as most of the systems do not include all the elements required for such 

optimisation (e.g., pump stations/pumps, valves and reservoirs).
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5 Future research

Future research challenges for operational optimisation of WDSs are listed in Figure 6 and grouped 

according to steps involved in optimisation: (i) simulation model, (ii) optimisation model, (iii) optimisation 

method, and (iv) solution postprocessing. In regards to simulation models, methodologies need to be 

developed to account for uncertainties in demands, pipe roughnesses and chemical reactions of constituents 

as incorporation of those uncertainties into optimisation models is very rare (Goryashko and Nemirovski 

2014; Rico-Ramirez et al. 2007). In contrast, it is important to develop understanding of the impact of 

assumptions while using simplified simulation models or surrogate models (for example in real-time control) 

and to control the error of the surrogate model to ensure that the solution found is still optimal. Benchmark 

test networks developed for WDS design (De Corte and Sörensen 2014) need to be adapted for operational 

optimisation of WDS as most of the systems do not include all the elements required for such optimisation 

(e.g., pump stations/pumps, valves and reservoirs).

Figure 6: Future research challenges

Concerning optimisation models, an open question is how to select the best formulation for the problem at 

hand (Maier et al. 2014). This formulation also involves development of the approach for including 

maximum demand charges into overall operating costs, which would take into account the uncertainty in the 

future water demand. Development of more appropriate expressions for characterising pipe maintenance 

costs is also required to include this type of wear and tear costs into an operational optimisation problem. 

Explicit pump scheduling would benefit from an improved optimisation model, which would decrease the 
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number of decision variables, thus reduce the size of the search space and enable application to more 

complex and extensive real-world problems. Regarding optimisation problems with water quality aspects, 

future research may consider the development of an optimisation model with an inbuilt flexibility for a 

general WDS, which could be customised for a specific WDS.

A methodology for an objective comparison of optimisation methods should be developed, so the best 

optimisation method for a particular case can be selected. Further, there is a need to develop computationally 

efficient optimisation methods which can be run in real-time, as well as take complex water quality 

behaviour into account. Concerning the methods for search space reduction, an open question is how to 

perform it without compromising the fidelity of the optimisation problem and undue simplification of the 

real system. While using metaheuristic algorithms, methodologies for algorithm parameter selection such as 

in Gibbs et al. (2010b) and Zheng et al. (2015) need to be developed.

In regards to solution postprocessing, the question remains how sensitive the ultimate selection of solution(s) 

is to the problem formulation selected (Maier et al. 2014). In multi-objective optimisation approach, methods 

need to be developed for selecting the best solution(s) from the Pareto set, which is representative and 

sufficiently small to be tractable. A further research challenge is to analyse relationships between pumping 

costs and water quality using a set of realistic case studies to ascertain whether they are conflicting objectives 

or they can be somehow integrated, leading to reduced optimisation problem complexity.

6 Summary and conclusion

This paper presented a literature review of optimisation of operation of WDSs since the end of 1980s to 

nowadays. The papers reviewed are concerned with optimal pump operation inclusive of real-time control, 

valve control and optimisation for water quality purposes for urban drinking as well as regional multiquality 

WDSs. The value of the paper is that it brings together the majority of journal publications for operational 

optimisation of WDS, two hundred in total, which have been published over the past three decades. It describes 

the current status, provides synthesis and suggests future research directions. Uniquely, it also contains 

extensive information for over one hundred publications in a tabular form, listing optimisation models 

inclusive of objectives, constraints, decision variables, solution methodologies used and other details.

The main future research challenges are identified as follows. The basic requirement for optimal operations 

is an accurate and reliable simulation model. However, the lack of understanding and accepted means for 

incorporating uncertainties in demand forecasting and network behaviour prediction models (both quantity 

and quality) are, among others, the factors limiting wider implementation of those models. Furthermore, 

there is no universal agreement among researchers and practitioners on how to formulate an operational 

optimisation problem and include all relevant objectives and constraints, while still allowing an efficient 

search for the best solution to implement. Although optimisation methods are well researched, there is no 

agreement on what optimisation method is best for a particular WDS operation problem, which requires a 
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concerted effort by the research community to develop methods for objective comparison and validation. 

Finally, postprocessing of results, and multi-objective (Pareto) solutions in particular, poses another research 

challenge as there is no universally accepted method for selecting only one solution, which can be 

implemented in a real system. Therefore, water distribution operational optimisation problems are far from 

being solved, despite the large body of literature on this subject published over the last 20-30 years.

7 List of terms

 Hydraulic constraints = Constraints arising from physical laws of fluid flow in a pipe network, such as 

conservation of mass of flow, conservation of energy, conservation of mass of constituent.

 Optimisation approach = Single-objective approach or multi-objective approach.

 Optimisation method = Method, either deterministic or stochastic, used to solve an optimisation problem.

 Optimisation model = Mathematical formulation of an optimisation problem inclusive of objective 

functions, constraints and decision variables.

 Simulation model = Mathematical model or software used to solve hydraulics and water quality network 

equations. 

 Solution = Result of optimisation, either from feasible or infeasible domain, so we refer to a ‘feasible 

solution’ or ‘infeasible solution,’ respectively. In mathematical terms though an ‘infeasible solution’ is 

not classified as a solution.

 System constraints = Constraints arising from the limitations of a WDS or its operational requirements, 

such as water level limits at storage tanks, limits for nodal pressures or constituent concentrations, tank 

volume deficit etc.

8 List of abbreviations

ACO = ant colony optimisation

ADP = approximate dynamic programming

AMALGAM = a multialgorithm genetically adaptive method

ANN = artificial neural network

ARIMA = autoregressive integrated moving average

ASA = adaptive search algorithm

CCPP = calcium carbonate precipitation potential

CNSGA = controlled elitist nondominated sorting genetic algorithm

CWQ = consistent water quality (sources)

D = design

DAN2-H = hybrid dynamic neural network

DBP = disinfection by-products

DCA = direct calculation algorithm

DP = dynamic programming

DPG = decomposed projected gradient
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DRAGA = dynamic real-time adaptive genetic algorithm

EA = evolutionary algorithm

EF = emission factor

ENCOMS = energy cost minimisation system

EPS = extended period simulation

fmGA = fast messy genetic algorithm

FMS = full mixing step

FP = full parameterisation (approach)

GA = genetic algorithm

GAPS = genetic algorithm for pump scheduling

GHG = greenhouse gas (emissions)

H-W = Hazen-Williams (head-loss equation)

HSA = harmony search algorithm

ILDS = improved limited discrepancy search

IP = integer programming

ISM = interpretive structural modelling

ISS = in-station scheduling

IWQ = inconsistent water quality (sources)

LDS = limited discrepancy search

LLS = linear least square

LP = linear programming

LPG = linear programming combined with a greedy algorithm

LRO = linear robust optimal (policy)

MILP = mixed integer linear programming

MINLP = mixed integer nonlinear programming

MIP = mixed integer programming

MIQP = mixed integer quadratic programming

MO = multi-objective

MOGA = multiple objective genetic algorithm

NLP = nonlinear programming

NPGA = niched Pareto genetic algorithm

NPV = net present value

NSGA = nondominated sorting genetic algorithm

NSGA-II = nondominated sorting genetic algorithm II

OI = operational intervention

OP = operation

OPTIMOGA = optimised multi-objective genetic algorithm

PBA = particle backtracking algorithm
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PMS = partial mixing step

POWADIMA = potable water distribution management (a research project)

PP = partial parameterisation (approach)

PRV = pressure reducing valve

PSO = particle swarm optimisation

Q-C = flow-quality (model)

Q-H = flow-head (model)

Q-C-H = flow-quality-head (model)

QP = quadratic programming

RM = reduced model (i.e. skeletonised model of a WDS)

RR = replacing reservoir

SA = simulated annealing

SARIMA = seasonal autoregressive integrated moving average

SCADA = supervisory control and data acquisition

SDW = safe drinking water

SLO = series of the local optima

SO = single-objective

SPEA = strength Pareto evolutionary algorithm

SPEA2 = strength Pareto evolutionary algorithm 2

SQP = sequential quadratic programming

TDS = total dissolved solids

TOC = total organic carbon

WDS = water distribution system

WTP = water treatment plant
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9 Appendix

ID. Authors (Year)
SO/MO*
Brief description

Optimisation model (objective functions+, 
constraints**, decision variables++)

Water quality
Network analysis
Optimisation method

Notes

1. Coulbeck et al. (1988a)
SO
Optimal pump operation 
considering fixed speed, variable 
speed and variable throttle pumps 
using hierarchical approach.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max reservoir water 
levels, (2) min/max flows through pump 
stations, (3) min/max speed for variable speed 
pumps, (4) min/max throttle valve factor for 
throttle pumps.
Decision variables: (1) The number of pumps 
which are switched on (discrete), (2) pump 
speeds (continuous), (3) throttle valve factors 
(continuous).

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
N/A.

 Hierarchical decomposition framework of pump scheduling problem 
into three levels is proposed as follows. (i) Upper level, which includes 
dynamic optimisation of reservoirs in order to find the optimal 
reservoir trajectories. (ii) Intermediate level, which included static 
optimisation of pump groups. (iii) Lower level, which includes static 
optimization of individual pump stations. 

 Proposed time horizon is 24 hours divided into 24 hourly time stages.
 It is assumed that a demand prediction is available. 
 The upper level problem can be solved using DP or subgradient NLP 

techniques.
 Test networks: N/A.

2. Coulbeck et al. (1988b)
SO
Optimal pump operation 
considering variable speed and 
variable throttle pumps using 
hierarchical approach.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max reservoir water 
levels, (2) min/max flows through pump 
stations, (3) min/max speed for variable speed 
pumps, (4) min/max throttle valve factor for 
throttle pumps.
Decision variables: (1) The number of pumps 
which are switched on (discrete), (2) pump 
speeds (continuous), (3) throttle valve factors 
(continuous).

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: 
A proposed algorithm.

 Extension of the paper by Coulbeck et al. (1988a) including new 
algorithms for lower level problem to optimise operation of individual 
pump stations. 

 The proposed algorithms are based on a decomposition approach. 
Optimality and convergence analysis is presented. 

 At this stage of the optimization procedure the reservoir levels, pump 
station flows and the number of pumps which are switched on are 
obtained from the upper and intermediate levels. As the intermediate 
level problem was implemented, feasible pump station heads and 
flows had to be chosen, which means that the solutions obtained for 
the lower level are not the optimal solutions for the overall problem.

 Algorithm is tested using 3 different pump station configurations 
consisting of variable speed pump groups, variable throttle pump 
groups and a mixture of variable speed and variable throttle pump 
groups.

 Test networks: (1) A combination of pump stations. 
3. Zessler and Shamir (1989)
SO
Optimal pump operation of 
regional WDSs using DP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Pump station discharge limits, 
(2) reservoir volume lower/upper limits (can 
be different for each time interval), (3) initial 
and final reservoir volumes.
Decision variables: (1) Pump station 
discharges.

Water quality: N/A.
Network analysis: A non 
specified network 
simulator (EPS).
Optimisation method: 
Progressive optimality 
method (iterative DP).

 Network is divided into subsystems, each consisting of a pump and 
upstream and downstream reservoir.

 Simulator is used to generate the energy-cost-versus-discharge 
function for each pump station.

 Time horizon is 24 hours divided into 1-hour intervals. Iterative 
optimisation algorithm progresses over time horizon, dealing with two 
adjacent time steps sequentially over all subsystems, one at a time. 
When dealing with one subsystem, the only parameters which vary are 
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the reservoir volumes. Optimisation stops when reservoir volumes do 
not change between iterations by more than a specified tolerance.

 Test networks: (1) Real-world regional water supply system Ein Ziv, 
Israel.

4. Brion and Mays (1991)
SO
Optimal pump operation using 
NLP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty term for the head bounds, (c) 
penalty term for the tank volume deficit.
Constraints: (1) Lower/upper bounds on the 
duration the pump operates within each time 
interval, (2) lower/upper pressure head 
bounds, (3) lower/upper tank water level 
bounds, (4) volume deficit in tanks at the end 
of the scheduling period.
Decision variables: (1) Duration of the pump 
operation time during time period 
(continuous).

Water quality: N/A.
Network analysis: 
KYPIPE (Wood 1980) 
(EPS).
Optimisation method: NLP 
solver GRG2 (Lasdon and 
Waren 1984).

 KYPIPE handles hydraulic constraints and lower/upper bounds on 
tank water level. Bounds on the pressure head and tank volume deficit 
are converted into penalty terms using an augmented Lagrangian 
method and added to the objective function. 

 Time horizon is 24 hours divided into 2-hour intervals.
 The following assumptions are considered. First, the decision to turn 

on the pump can be made only at the beginning of each time interval. 
Second, the duration of the pump operation time is a continuous 
variable, and can take a minimum value of zero and a maximum value 
equal to the length of the time interval (i.e. 2 hours). These limitations 
can be offset by the use of shorter time intervals, but at the expense of 
longer computation times.

 Global optimum cannot be guaranteed.
 Test networks: (1) WDS for city of Austin Northwest B pressure zone 

(incl. 98 nodes), Texas.
5. Ulanicki and Orr (1991)
SO
Optimal pump operation suitable 
for large-scale drinking WDSs 
using LP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) water treatment costs.
Constraints: (1) Lower/upper limits of 
reservoir operating ranges, (2) treatment work 
set-point limits, (3) treatment work efficiency, 
(4) reservoir flow limits, (5) system flow 
limits, (6) min pressure in the system.
Decision variables: (1) Pump control vector 
(continuous for variable speed pumps and 
control valves, and discrete for the actual 
number of pumps in use), (2) treatment works 
set points vector (continuous).

Water quality: Not 
specified.
Network analysis: 
A system simulator (EPS).
Optimisation method: 
Simplex method for lower 
level problem, a non 
specified method for upper 
level problem.

 Time distribution function is introduced. The optimisation problem is 
defined in terms of this time distribution function instead of original 
control variables. Time horizon is 24 hours.

 Two level optimisation structure, lower/upper level, is used. Lower 
level problem is a LP problem, whereas upper level problem is a 
continuous NLP problem with linear constraints.

 Test networks: (1) System with two treatment works, four pump 
stations, two contact tanks and two reservoirs.

6. Jowitt and Germanopoulos 
(1992)
SO
Optimal pump operation in real-
time considering both energy and 
demand charges using LP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge 
and demand charge).
Constraints: (1) Constraints on the hours of 
pumping, (2) min/max volume at storages, (3) 
initial and final volume at storages, (4) 
min/max flow rate through valve connecting 
storages, (5) max licensed abstraction of water 

Water quality: N/A.
Network analysis: 
Extended period network 
simulation model 
(Germanopoulos 1988).
Optimisation method: 
Revised simplex method.

 Original problem is simplified into a LP problem. Time horizon is 24 
hours, which is divided into control intervals.

 Both unit and max demand electricity charges are considered. Max 
electricity charges are taken into account through an iterative 
procedure of a LP problem for varying restrictions on pump usage, 
until the best solution is obtained.

 The methodology is robust with low computation time, hence it is 
suitable for real-time optimisation.
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at a source pump station over the optimisation 
period.
Decision variables: (1) Length of time for 
which pump station operates, (2) flow rate 
through valves, (3) storage volumes at end of 
time intervals (i.e. control intervals). 

 Test networks: (1) High Wycombe area network (incl. 87 nodes, but 
simplified network is used in the optimisation), UK.

7. Mehrez et al. (1992)
SO
Optimal pump operation of 
regional multisource multiquality 
WDSs in real-time using NLP. 

Objective (1): Minimise (a) the pump 
operating costs (fixed energy charge and 
varying expenses).
Constraints: (1) Max flow in pipes, (2) 
min/max reservoir volumes, (3) water quality 
upper limits at customer demand nodes, (4) 
pump operational conditions, (5) valve 
operational conditions.
Decision variables: (1) Pump discharges, (2) 
solute concentration.

Water quality: Chloride, 
magnesium, sulphate, 
salinity considered as 
conservative.
Network analysis: Explicit 
mathematical formulation 
(quasi state).
Optimisation method: 
GAMS/MINOS using 
projected Lagrangian 
algorithm (Murtagh and 
Saunders 1982).

 Model is a short term for a planning horizon of 2 hours considering 
energy peak and off-peak times. Planning horizon is divided into two 
1-hour intervals, assuming steady state conditions within each time 
interval.

 In order to increase computational efficiency, solution methodology is 
divided into 3 phases. First two phases are used to validate an initial 
solution, the last phase is the actual optimisation.

 Model is applied to a regional WDS system, which mixes water from 
aquifers and a desalination plant, and delivers it to irrigation and 
domestic customers.

 Test networks: (1) Arava Rift Valley, Israel.

8. Carpentier and Cohen (1993)
SO
Optimal pump operation using 
DP.

Objective (1): Minimise (a) the pump 
operating costs (electric consumption charge), 
(b) water treatment costs.
Constraints: (1) Min/max reservoir water 
levels.
Decision variables: (1) On-off pump statuses 
(discrete), (2) flows through the valves 
(continuous). 

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation.
Optimisation method: 
Discrete dynamic 
programming.

 Decomposition and coordination techniques are used. The network is 
decomposed into a central control and peripheral subnetworks. Dual 
decomposition scheme is used to set up optimisation problems for all 
subnetworks, which are solved sequentially.

 The flows in the interconnection valves between the central and 
peripheral networks are mostly coordinated by the central network. 
However, some subnetworks are also given a parallel control of the 
flow in the valve. As a result, two values are produced by the two 
optimization subproblems and the dual price variables are updated to 
equalise these values. This coordination process provides near optimal 
solutions, which may not be feasible. To obtain feasible solutions, the 
interconnection valve flows are fixed for each subnetwork at their 
computed values, and optimisation problems solved again using 
detailed model.

 Time horizon is 24 hours divided into 1-hour intervals.
 The paper also analyses leak detection, which is not included here as 

this topic is outside of scope of this review paper.
 Test networks: (1) The network called RPO, west of Paris.

9. Ostfeld and Shamir (1993a)
SO
Optimal operation of multiquality 
WDSs for steady state conditions 

Objective (1): Minimise (a) the costs of water 
at sources, (b) water treatment costs, (c) pump 
operating costs (energy consumption charge), 
(d) penalty costs for violation of pressure 

Water quality: Not 
specified conservative 
parameters.
Network analysis: Explicit 

 Model is a short term for a planning horizon of 2 hours considering a 
constant energy tariff.

 Concentration equations allow the algorithm to reverse flow directions 
during the algorithm iterations.
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including the costs of water at 
sources, water treatment costs and 
pump energy costs using NLP.

head.
Constraints: (1) Min/max pressure heads at 
selected internal (usually customer) nodes, (2) 
min/max discharges in arcs, (3) min/max 
concentrations at internal nodes, (4) max 
removal ratios of quality parameters at 
treatment plants.
Decision variables: (1) Discharges in arcs 
(pipes and pumps), (2) treatment costs of 
quality parameter per unit volume of treated 
water.

mathematical formulation 
(steady state).
Optimisation method: 
GAMS/MINOS using 
projected augmented 
Lagrangian algorithm 
(Murtagh and Saunders 
1982).

 Artificial variables are introduced to enable to obtain mathematical 
solution even when the system cannot meet all the head constraints. A 
penalty parameter on these variables is added in the objective function.

 Sensitivity analysis is performed to examine the sensitivity of results 
to changes in (1) the prices of water, (2) prices of treatment, (3) prices 
of energy, (4) head constraint at an internal node.

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand 
nodes).

10. Ostfeld and Shamir (1993b)
SO
Optimal operation of multiquality 
WDSs for unsteady state 
conditions including the costs of 
water at sources, water treatment 
costs and pump energy costs 
using NLP.

Objective (1): Minimise (a) the costs of water 
at sources, (b) water treatment costs, (c) pump 
operating costs (energy consumption charge), 
(d) penalty costs for violation of pressure 
head.
Constraints: (1) Min/max pressure heads at 
selected internal (usually customer) nodes, (2) 
min/max discharges in arcs, (3) min/max 
concentrations at internal nodes, (4) max 
removal ratios of quality parameters at 
treatment plants, (5) min/max reservoir levels.
Decision variables: (1) Discharges in arcs 
(pipes and pumps), (2) treatment costs of 
quality parameter per unit volume of treated 
water.

Water quality: Not 
specified parameters, 
conservative in pipes, non-
conservative in reservoirs 
(first order decay).
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
GAMS/MINOS using 
projected augmented 
Lagrangian algorithm 
(Murtagh and Saunders 
1982).

 Extension of the paper by Ostfeld and Shamir (1993a) with the major 
differences listed as follows.

 Model is an unsteady state with a planning horizon of 24 hours divided 
into time intervals of one to few hours, and a varied energy tariff.

 Water quality parameters decay in reservoirs (but are conservative in 
pipes).

 Sensitivity analysis is performed to test the sensitivity of results to 
changes in (1) the prices of water, (2) pump efficiency and (3) quality 
constraint at an internal node.

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand 
nodes).

11. Ulanicki et al. (1993)
SO
Optimal selection of new pumps 
within given locations for an 
urban WDS as part of major 
redevelopment using LP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max pressure limits at 
network nodes, (2) initial and final water 
levels in reservoirs over 24-hour period are 
equal, (3) average reservoir flows over a time 
interval belong to the respective domain.
Decision variables: (1) Control configurations 
(discrete).

Water quality: N/A.
Network analysis: 
A network simulator 
(EPS). To establish 
boundary conditions of the 
test network within the 
larger system, GINAS5 
(Coulbeck and Orr 1988) 
is used.
Optimisation method: 
Numerical algorithms 
(Matheiss and Rubin 
1980).

 The optimisation problem is formulated as a LP problem for a time 
horizon of 24 hours. Both fixed and variable speed pumps are 
considered.

 The solution methodology constitutes a sequence of steps. All practical 
control configurations are created, simulation is run to obtain sets of 
results, a least-cost surface is constructed. The union of feasible and 
optimal control configurations is created, which represents the final 
results. Balances are checked, if they comply, the best configuration is 
selected, otherwise relevant steps are repeated.

 Methodology is limited to up to 1,000 control configurations for a 
particular time instant. For the test network, the number of control 
configurations is reduced by engineering judgement and simulation 
experiments.

 Test networks: (1) Part of London's WDS (incl. 433 nodes, but 
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simplified network is used in the optimisation), UK.
12. Lansey and Awumah (1994)
SO
Optimal pump operation suitable 
for small to midsized WDSs for 
both real-time and longer 
planning horizons using DP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge) 
while limiting the number of pump switches.
Constraints: (1) Min/max pressure heads in 
nodes, (2) min/max water levels in tanks, (3) 
initial and final water level in tanks are equal, 
(4) max number of pump switches for each 
time interval, (5) max number of pump 
switches for the planning horizon.
Decision variables: (1) Pump combinations 
(binary, 0 = pump off, 1 = pump on).

Water quality: N/A.
Network analysis: 
KYPIPE (Wood 1980) 
(EPS).
Optimisation method: DP.

 Pump operation in real-time is solved, accounting for variations in 
water demands and energy costs. Time horizon is 24 hours divided 
into 2-hour intervals.

 Pump switching is introduced to reduce the maintenance costs.
 A two level approach is used to solve the problem: (1) off-line 

‘preoptimisation’ to generate simplified hydraulics and energy 
consumption by simple nonlinear functions using polynomial least-
square method. (2) On-line DP optimisation.

 Sensitivity analysis is performed considering some operational 
decisions and other parameters which influence the accuracy and 
computational effort.

 The model is applicable to small to midsized systems, with up to about 
8 pumps and 1 tank.

 Test networks: (1) WDS for city of Austin Northwest B pressure zone 
(incl. 98 nodes), Texas.

13. Ulanicki and Kennedy (1994)
SO
Optimal operation of WDSs 
including pump energy costs and 
water treatment costs using 
MINLP.

Objective (1): Minimise (a) the water 
treatment costs (based on volume of treated 
water), (b) pump operating costs (energy 
consumption charge).
Constraints: (1) Customer demands, (2) 
operational conditions such as lower/upper 
water levels in tanks. 
Decision variables: (1) Pipe flows, (2) nodal 
heads, (3) water production (continuous), (4) 
valve positions (continuous), (5) pump speed 
(continuous), (6) the number of pumps 
switched on (discrete).

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
Lancelot package (Conn et 
al. 1992) using the 
augmented Lagrangian 
method, branch and bound 
algorithm.

 The optimisation problem is formulated as a MINLP problem.
 Time horizon is 24 hours with 4 time steps.
 Analogy with electrical networks is used to formulate a mathematical 

model of water flow in pipe network, such that pipe = nonlinear 
resistor, tank = capacitor, pump = source of energy, demand = load. 
Ohm’s law is applied to describe characteristics of individual 
elements.

 A special model structure (sparsity) is used, which expresses how 
many pipes are connected to a node in contrast to the total number of 
pipes.

 The scale of the optimisation problem is reduced by replacing pipes by 
equivalent nonlinear resistance, using a technique of (Zehnpfund and 
Ulanicki 1993).

 Test networks: (1) Yorkshire Grid system with 2 sources (WTPs), 
4 tanks, 5 pump stations and 10 pipes.

14. Brdys et al. (1995)
SO
Optimal operation of drinking 
WDSs integrating water quality 
and quantity using mixed integer 
linear programming (MILP) and 
GA.

Objective (1): Minimise the costs of (a) 
untreated water from the sources, (b) water 
treatment, (c) the quality control by injection 
at the junction nodes, (d) electricity due to 
pumping.
Constraints: (1) Bounds on reservoir levels, 
(2) bounds on flows, (3) bounds on heads at 
chosen nodes, (4) bounds on constituent 
concentrations at demand nodes and selected 

Water quality: Non-
conservative parameters 
(first order kinetics).
Network analysis: (i) 
Explicit mathematical 
formulation (unsteady 
state), (ii) EPANET.
Optimisation method: (i) 
Implicit solver MOMIP 

 A detailed mathematical formulation of the nonlinear non-convex 
mixed integer optimization problem is presented in Brdys and Chen 
(1995).

 Three approaches are used to solve the problem in time horizon of 24 
hours.

 Implicit approach: The problem is transformed into an approximating 
MILP problem, for which efficient numerical solvers exist. The 
disadvantage is that for a very accurate approximation, the 
dimensionality of the problem increases significantly. The advantage is 
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junction nodes.
Decision variables: (1) Pump and valve 
controls, (2) integer variables controlling 
pump station operation structure (normal or 
bypass), (3) controlled flows, (4) treatment 
flows, (5) constituent concentrations.

(Ogryczak and Zorychta 
1993), (ii) explicit solver 
GAUCSD (Schraudolph 
and Grefenstette 1992) 
using GA. 

that an arbitrarily accurate approximation of the global min is obtained 
regardless of the starting point.

 Explicit approach: The problem is solved using the hydraulic simulator 
combined with GA. Although the problem dimension is much smaller 
compared to the implicit approach, the total computational effort may 
be greater. Local optima can be caught easily and more effort is 
required to obtain the global solution.

 Combined approach: The implicit method based on a rough 
approximation of the model provides starting points, subsequently the 
explicit method finds the global optimum.

 Test networks: (1) Neuhaus water supply system, Germany (Schneider 
et al. 1993).

15. Mackle et al. (1995)
SO
Optimal pump operation using 
GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for violating constraints.
Constraints: (1) Consumer demands, (2) 
min/max water levels in reservoirs, (3) volume 
deficit in reservoirs at the end of the 
scheduling period.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on, during a time 
interval).

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: GA.

 Model considers fixed speed pumps only. Time horizon is 24 hours 
divided into 1-hour intervals, with two electricity tariffs used.

 Standard GA is modified by introducing ranking procedure, where 
population members are ranked based on their costs, each receives 
fitness equal to the order number within the ranked list, i.e. the most 
expensive solution obtains 1, the next 2, etc.

 Paper predicts increased implementation of on-line (real-time) control 
in order to adjust planned pump schedules to compensate for 
differences between predicted and actual demands.

 Test networks: (1) Simple system with 4 pumps and 1 reservoir.
16. Nitivattananon et al. (1996)
SO
Optimal pump operation in real-
time considering both energy and 
demand charges using progressive 
optimality combined with 
heuristics.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge 
and demand charge).
Constraints: (1) Min/max pump discharges, 
(2) min/max reservoir volumes, (3) initial and 
final reservoir volumes.
Decision variables: (1) Pump discharges 
(continuous and discrete).

Water quality: N/A.
Network analysis: 
Simplified system 
hydraulics (unsteady state).
Optimisation method: 
Progressive optimality 
algorithm for multi-state 
DP problem, heuristics for 
discretising pump 
discharges and refining 
pump schedules, OPWAD 
(OPWAD 1994).

 Optimisation model is decomposed spatially into subsystems and time 
wise into long-term and short-term model. Long term model (i.e. 1 
month, continuous pump discharges) estimates the demand charge and 
determines monthly pump operation. Subsequently, short-term model 
(i.e. 1 day, discrete pump discharges) refines pump discharges and 
pump combinations, which are finally rearranged by heuristics. This 
procedure is carried out for each subsystem.

 Development of preoptimisation data is required.
 Test networks: (1) Pittsburgh water supply system, Pennsylvania.

17. Pezeshk and Helweg (1996)
SO
Optimal pump operation 
considering both fixed and 
variable speed pumps in real-time 
suitable for large and complex 

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max pressure at selected 
nodes (checkpoints).
Decision variables: (1) Pump statuses (0 = 
pump off, 1 = pump on), (2) speed settings for 

Water quality: N/A.
Network analysis: 
KYPIPE (Wood 1980) 
(EPS).
Optimisation method: 
ASA.

 Checkpoints (nodes) are strategically selected so that if the pressure at 
each checkpoint is within the min and max allowable limits, pressures 
at all nodes are also within allowable limits.

 Pump stations are assigned an influence coefficient(s) which indicate 
their impact on the pressure at the checkpoints. Basically, pumps with 
the highest influence coefficients are turned on to correct the 
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networks using ASA. variable speed pumps (0 = pump off, 1 = 
pump on at the highest speed, 2 = pump on at 
the second highest speed).

problematic pressure zones.
 Pump curves are generated from field pump tests.
 It is recommended that the ASA program be installed directly onto the 

SCADA system.
 Test networks: (1) WDS of Memphis Light, Gas and Water, the water 

utility for Memphis (incl. 1127 nodes), Tennessee and surrounding 
Shelby County.

18. Percia et al. (1997)
SO
Optimal pump operation of 
regional multisource multiquality 
WDSs in real-time using NLP.

Objective (1): Minimise (a) the pump 
operating costs (fixed energy charge and 
varying expenses), (b) penalty costs for 
deviation from zero equality constraints for 
pumps and valves. 
Constraints: (1) Allowed head losses at links 
terminating at consumption sites, (2) min/max 
reservoir volumes, (3) mean required quality 
at the consumption sites, (4) pump operational 
conditions, (5) valve operational conditions.
Decision variables: (1) Pump discharges, (2) 
artificial variables (for zero equality 
constraints).

Water quality: 
Conservative: chloride, 
magnesium, sulphate (only 
chloride used in 
implementation).
Network analysis: Explicit 
mathematical formulation 
(quasi state).
Optimisation method: 
GAMS/MINOS using 
projected Lagrangian 
algorithm (Murtagh and 
Saunders 1982).

 Extension of the paper by Mehrez et al. (1992).
 Model is a short term quasi state for a planning horizon of 2 hours 

using energy peak and off-peak times both daily and seasonal. It 
identifies hourly pump schedules and water release policy from the 
reservoirs.

 Similar to Mehrez et al. (1992), solution methodology is divided into 3 
phases to increase computational efficiency.

 The paper focuses on the structure of the model and the 
implementation procedure, rather than finding global optimum. The 
use of continuous functions for describing the on/off status of pumps 
and control valves enables a significant reduction in the degree of 
difficulty of the problem.

 Model is applied to a regional WDS system, which mixes water from 
aquifers and a desalination plant, and delivers it to various customer 
groups.

 Test networks: (1) Southern Arava Regional Water Distribution 
Network (incl. 29 nodes), Israel.

19. Savic et al. (1997)
SO, MO
Optimal pump operation applying 
both single-objective and multi-
objective approach using hybrid 
GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for violating constraints.
Objective (2): Minimise the number of pump 
switches.
Constraints: (1) Min and max reservoir water 
levels, (2) recovery of the initial reservoir 
water level at the end of simulation.
Decision variables: (1) Pump statuses 
(binary).
Note: One SO model including objective (1), 
one MO model including both objectives.

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: 
Hybrid GA, where GA is 
combined with 2 local 
(neighbourhood) search 
techniques.

 Extension of the paper by Mackle et al. (1995) implementing (i) a 
hybridisation of GA and (ii) multi-objective approach. The 
improvement of GA includes progressive assignment of penalties for 
constraint violations, and introduction of feasibility of solutions as an 
additional objective to ensure that there are no infeasible solutions in 
final population.

 The number of pump switches is used as a surrogate measure for pump 
maintenance costs.

 Time horizon is 24 hours divided into 1-hour intervals.
 Robustness of GA is tested using alterations of demands and initial 

reservoir water levels.
 Test networks: (1) Simple system with 4 pumps and 1 reservoir.

20. Lingireddy and Wood (1998)
SO
Three examples demonstrating 
economic and hydraulic benefits 

Objective (1): Minimize (a) the pump 
operating costs (energy consumption charge) 
while using variable speed pumps.
Constraints: (1) Min piezometric surface over 

Water quality: N/A.
Network analysis: Head-
flow-efficiency-speed 
curves for variable speed 

 Three examples of benefits of using variable speed pumps are 
presented as follows.

 Replacement of fixed speed pumps by variable speed pumps to 
maintain min pressure requirements while reducing the pumping costs 
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of using variable speed pumps to 
improve the operation of WDSs 
using GA.

the network.
Decision variables: (1) Pump speeds.

pumps used; the direct 
calculation algorithm 
(DCA) to calculate the 
pump speeds (Wood et al. 
1992); EPS.
Optimisation method: GA 
in conjunction with DCA.

and lowering the leakage due to lower operating pressures.
 Optimisation of pump operation using variable speed pumps (model 

described in the columns on the left). Time horizon is 24 hours with a 
varied energy tariff. It is noted that the “average amount of overhead 
storage available is considerably reduced using the variable speed 
pumps”.

 Potential use of variable speed pumps in controlling hydraulic 
transients.

 Test networks: (1) Skeletonised medium sized WDS (incl. 16 nodes), 
(2) network based on an existing WDS (incl. 39 nodes), (3) simple 
pump-fed WDS (incl. 9 nodes). 

21. Boccelli et al. (1998)
SO
Optimal scheduling of booster 
chlorination stations in drinking 
WDSs using LP.

Objective (1): Minimize (a) the total 
disinfectant mass dose, injected per 
scheduling cycle.
Constraints: (1) Min/max disinfectant 
concentrations at monitoring locations.
Decision variables: (1) Disinfectant doses.

Water quality: Chlorine 
(first order kinetics for 
chlorine decay).
Network analysis: 
EPANET (EPS).
Optimisation method: 
MINOS (Murtagh and 
Saunders 1987) using the 
simplex algorithm.

 The optimisation problem is formulated as a LP problem. A principle 
of linear superposition is used, which implies that disinfectant 
concentration at a monitoring location is the sum of all individual 
disinfectant injection influences.

 Hydraulic dynamics and concentrations are assumed to be periodic, as 
well as disinfectant mass injection rates. This allows reducing infinite-
time problem into finite-time problem. Time horizon is 24 hours.

 “Among the five cases investigated, the best schedule was found when 
a booster station was located at a storage reservoir, eliminating the 
need to maintain significant residual in the large volume of tank water, 
for distribution during high demand periods”.

 Test networks: (1) Cherry Hill-Brushy Plains portion of the South 
Central Connecticut Regional Water Authority network (incl. 34 
nodes), U.S.

22. Goldman and Mays (1999)
SO
Optimal pump operation with 
water quality constraints in 
drinking WDSs using simulated 
annealing (SA).

Objective (1): Minimize (a) the pump 
operating costs (energy consumption charge), 
(b) penalty function for violating constraints.
Constraints: (1) Min/max nodal pressure 
heads, (2) min/max tank water levels, (3) min 
tank water level to provide emergency fire 
flow storage, (4) tank water level to recover at 
the end of simulation, (5) min/max chlorine 
concentrations.
Decision variables: (1) Length of the pump 
operation time during time period (discrete).

Water quality: Chlorine.
Network analysis: 
EPANET (EPS).
Optimisation method: SA.

 Pump schedule repeats every 24 hours. Time horizon is 12 days 
divided into 1-hour intervals. This extended period is to wash out 
initial water quality conditions from the system and to reach steady 
state behaviour.

 It is suggested that the SA program be adapted to the SCADA system 
due to the following benefits: real-time optimisation of pump 
operation for fire events or locally increased demands (flushing the 
system), unexpected chlorine level deficiencies.

 Test networks: (1) North Marin Water District - Navato, California 
(incl. 102 nodes) (EPANET Example 3 (USEPA 2013)).

23. Sakarya and Mays (1999)
SO
Optimal pump operation for 
drinking WDSs considering water 

Objective (1): Minimize (a) the deviations of 
the actual constituent concentrations from the 
desired values, (b) penalty function for 
violating bound constraints.

Water quality: Non-
conservative parameter.
Network analysis: 
EPANET (EPS).

 The optimisation problem is formulated as a NLP problem.
 Two different penalty function methods are used for handling 

constraints, the augmented Lagrangian method and the bracket penalty 
method. These methods delivered similar results.
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quality either as a constraint or an 
objective function using NLP.

Objective (2): Minimize (a) the total pump 
operation time, (b) as above.
Objective (3): Minimize (a) the pump 
operating costs (energy consumption charge), 
(b) as above.
Constraints (objective (1)): Lower/upper 
bounds on (1) pump operation time, (2) nodal 
pressure head, (3) storage water levels.
Constraints (objectives (2-3)): (1)-(3) as 
above, (4) lower/upper bounds on nodal 
constituent concentrations.
Decision variables: (1) Length of the pump 
operation time during time period (discrete), 
(2) penalty function parameters.
Note: Three SO models, each including one 
objective.

Optimisation method: NLP 
solver GRG2 (Lasdon and 
Waren 1984).

 Time horizon is 12 days divided into 2-hour intervals with a constant 
energy tariff. Pump schedule repeats every 24 hours.

 It was found out that if pump operation schedules are cyclic for a 
certain period, the system reaches steady state with the initial and final 
tank water levels being equal. Therefore, there is no need to use a 
constraint which forces tank water level to recover at the end of the 
simulation period.

 The results demonstrate that using concentration violations as 
constraints gives better results than using the minimisation of the 
constituent concentration from the desired values as the objective 
function.

 Test networks: (1) North Marin Water District Zone 1 (incl. 91 nodes) 
(EPANET Example 3 (USEPA 2013)).

24. Cembrano et al. (2000)
SO
Optimal operation of WDSs in 
real-time linked to the SCADA 
system using NLP.

Objective (1): Minimise the performance 
index including (a) the cost of water 
acquisition, (b) pump operating costs (energy 
consumption charge).
Constraints: (1) Operational limits on 
reservoir volumes, (2) pressure limit at one 
junction node, (3) initial and final volumes in 
reservoirs are equal.
Decision variables: (1) Pump set points 
(treated as continuous, converted into 
discrete), (2) valve ratios.

Water quality: N/A.
Network analysis: 
WATERNET (Greco 
1997) simulation module.
Optimisation method: 
WATERNET optimal 
control module using 
generalised reduced 
gradient method (Abadie 
and Carpentier 1969).

 Optimal control strategies ahead of time are generated. The 
optimisation process consists of (i) obtaining current network status 
from the SCADA, (ii) predicting future demands using fuzzy inductive 
reasoning (Lopez et al. 1996), (iii) running optimisation. This process 
is executed and updated at regular intervals.

 The original network model is simplified in order to reduce time of 
hydraulic simulation within the optimisation procedure. Optimisation 
results obtained are validated using the original (detailed) network 
model.

 Time horizon is 24 hours (ahead of time) divided into 1-hour intervals. 
 Results demonstrate cost savings of 18%.
 Test networks: (1) Sintra network (incl. 204 nodes, but simplified 

network is used in the optimisation), Portugal.
25. Cohen et al. (2000a)
SO
Optimal operation of multiquality 
WDSs considering water 
treatment plants (WTPs) and 
water quality requirements using 
NLP.

Objective (1): Minimise the cost of operation 
including (a) the water supply costs from 
sources, (b) water treatment costs, (c) 
transportation costs (related to hydraulic 
properties of a pipe), (d) yield reduction costs, 
(e) penalty costs for violating water quality 
constraints.
Constraints: (1) Quality parameter function 
(interdependency of quality parameters), (2) 
pipe discharge limits, (3) supply discharge 
limits, (4) water quality limits for customers 

Water quality: Salinity, 
magnesium, sulphur 
considered as conservative.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: 
Modified projected 
gradient method.

 A flow-quality (Q-C) model is formulated.
 The model equations are defined to allow the flow to reverse during 

the optimization procedure. The transportation cost function and 
dilution equations are smoothed using exponential smoothing 
procedure. The problem is reduced to a NLP problem with linear 
constraints. It is solved by decomposing the problem into inner-outer 
problems, which enables incorporation of a large number of water 
quality parameters.

 Customers are categorised into three groups: (i) agricultural, (ii) 
domestic and industrial, (iii) customers with concentrations limits. 
Their requirements are implemented differently into the model, such as 
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(iii), (5) treatment limits on removal ratios.
Decision variables: (1) Water flow, (2) water 
quality distribution, (3) removal ratios in the 
treatment plants.

a relative yield function, the water treatment cost at customer 
connection points, and water quality constraints, respectively.

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 
nodes), Southern Israel, (2) WDS of the Central Arava region (incl. 38 
nodes), Southern Israel.

26. Cohen et al. (2000b)
SO
Optimal operation of multiquality 
WDSs considering pumps and 
valves using NLP.

Objective (1): Minimise the cost of operation 
including (a) the water supply costs from 
sources, (b) pump energy costs at boosters, (c) 
pump energy costs at pump stations.
Constraints: Limits on discharges for (1) 
boosters, (2) valves, (3) pump stations, (4) 
sources, (5) limits on pressure heads at 
customer nodes, (6) limits on opening ratio of 
valves, (7) given discrete configurations of 
pump stations.
Decision variables: Q0-H problem: (1) 
pumping heads at pump stations, (2) 
headlosses in control valves, (3) artificial 
variables to assure a mathematical solution. Q-
H problem: (4) circular flows.

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: Q0-
H (inner) problem solved 
using sequential LP. Q-H 
(outer) problem solved 
using projected gradient 
method coupled with the 
complex method.

 A flow-head (Q-H) model is formulated.
 The original discrete optimisation problem is transformed into a 

continuous and smooth model. The head-flow performance curves for 
pumps are represented by smoothed two dimensional functions. The 
final problem is a NLP problem with linear constraints, which is 
decomposed into inner-outer problems. For a given initial flow 
distribution in the network Q0, the Q0-H problem (i.e. inner problem) 
is solved. The flow distribution is then modified by changing the 
circular flows (i.e. outer problem), such that the locally optimal 
solution at the next point has a better value of the objective function. 
This process is repeated until the termination criteria are satisfied.

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 
nodes), Southern Israel, (2) WDS of the Central Arava region (incl. 38 
nodes), Southern Israel.

27. Cohen et al. (2000c)
SO
Optimal operation of multiquality 
WDSs considering pumps, valves, 
WTPs and water quality 
requirements using NLP.

Objective (1): Minimise the total cost of 
operation including (a) the water supply costs 
from sources, (b) pump energy costs at 
boosters, (c) pump energy costs at pump 
stations, (d) water treatment costs, (e) yield 
reduction costs, (f) penalty costs for violating 
water quality constraints.
Constraints: Limits on discharges for (1) 
boosters, (2) valves, (3) pump stations, (4) 
sources, (5) limits on pressure heads at 
customer nodes, (6) limits on pumping heads, 
(7) limits on opening ratio of valves, (8) 
quality parameter function (interdependency 
of quality parameters), (9) treatment limits on 
removal ratios.
Decision variables: Q-C-H problem: (1) 
circular flows, (2) removal ratios in treatment 
plants, (3) water quality distribution. Q0-H 
problem: (4) opening ratios of valves, (5) 
configurations of pump stations, (6) 
headlosses in control valves, (7) bypass flows.

Water quality: Salinity, 
magnesium, sulphur all 
considered as conservative.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: Q0-
H (inner) problem solved 
using sequential LP. Q-C-
H (outer) problem solved 
using projected gradient 
method coupled with the 
complex method.

 A comprehensive flow-quality-head (Q-C-H) model is formulated, 
which combines two previous Q-C and Q-H models (Cohen et al. 
2000a,b).

 The paper uses the solution methods developed earlier in Cohen et al. 
(2000a,b) for Q-C and Q-H subproblems as building blogs. 
Accordingly, the original integer NLP problem is transformed into a 
NLP problem with linear constraints. The problem is solved by 
decomposing the problem into inner-outer structures.

 There are three customer groups with different water quality 
requirements: (i) agricultural, (ii) domestic and industrial, (iii) 
customers with concentrations limits.

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 
nodes), Southern Israel, (2) WDS of the Central Arava region (incl. 38 
nodes), Southern Israel.
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28. Sakarya and Mays (2000), 
Sakarya and Mays (2003)
SO
Optimal pump operation for 
drinking WDSs considering water 
quality either as a constraint or an 
objective function using NLP.

Objective (1): Minimize (a) the deviations of 
the actual constituent concentrations from the 
desired values, (b) penalty function for 
violating bound constraints.
Objective (2): Minimize (a) the total pump 
operation time, (b) as above.
Objective (3): Minimize (a) the pump 
operating costs (energy consumption charge), 
(b) as above.
Constraints (objective (1)): Lower/upper 
bounds on (1) pump operation time, (2) nodal 
pressure head, (3) storage water levels.
Constraints (objectives (2-3)): (1)-(3) as 
above, (4) lower/upper bounds on nodal 
constituent concentrations.
Decision variables: (1) Length of the pump 
operation time during time period (discrete), 
(2) penalty function parameters.
Note: Three SO models, each including one 
objective.

Water quality: Non-
conservative parameter.
Network analysis: 
EPANET (EPS).
Optimisation method: NLP 
solver GRG2 (Lasdon and 
Waren 1984).

 The optimisation problem is formulated as a NLP problem. Constraints 
are incorporated as penalty functions using augmented Lagrangian 
method.

 Solution methodology is a two-step loop procedure, with the 
Lagrangian parameters update in the outer loop and GRG2-EPANET 
combination in the inner loop.

 Time horizon is 12 to 50 days divided into 1-hour intervals, where 24-
hour pump schedule is repeated over the time horizon. The length of 
the time horizon is to assure that steady state for both hydraulic and 
water quality analysis is reached, as well as periodic behaviour of 
water levels at storage tanks.

 To reduce the number of EPANET calls, a simplified method is used 
as follows. When the change in control variables between consecutive 
iterations is small, the change in the state variables is assumed to be 
also small, therefore EPANET is not called and GRG2 continues to 
use the previous state variables.

 Test networks: (1) Hypothetical WDS with 1 reservoir, 1 pump and 1 
storage tank (incl. 17 nodes).

29. Wegley et al. (2000)
SO
Optimal pump operation 
considering variable speed pumps 
using PSO.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max nodal pressures, (2) 
min/max tank water levels, (3) min/max pump 
speeds. 
Decision variables: (1) Pump speeds 
(continuous).

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: PSO 
(Eberhart and Kennedy 
1995).

 Variable speed pumps are considered.
 PSO derives solutions from both local and global searches by using a 

value of the inertial weight. The search process for new solutions 
includes previously found best solutions.

 Unlike GA, PSO uses continuous decision variables. Since PSO 
considers unconstrained problems, a penalty function is used to handle 
constraints.

 Test networks: Not specified.
30. Boulos et al. (2001)
SO
Optimal pump operation using 
GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge 
and demand charge).
Constraints: (1) Min/max pressure at nodes, 
(2) max flow velocity in pipes, (3) min/max 
water level in tanks, (4) volume deficit in 
tanks at the end of the scheduling period, (5) 
max number of pump switches.
Decision variables: (1) Pump control settings 
(binary, 0 = pump off, 1 = pump on).

Water quality: N/A.
Network analysis: H2ONet 
(EPS).
Optimisation method: 
H2ONet scheduler using 
GA.

 The paper focuses on the development of an optimisation tool within 
H2ONet analyzer, which utilizes GA to generate the optimal pump 
schedules for groups of pumps in WDS over a time horizon of usually 
24 hours.

 The optimisation model uses the number of pump switches as 
a surrogate measure for pump maintenance costs.

 The optimisation tool was tested and verified on a number of actual 
large scale WDSs.

 Test networks: (1) Small network with 52 pipes, 1 treatment plant, 3 
pumps located at treatment plant, 1 variable storage tank, 1 pressure 
reducing valve (PRV) (incl. 45 nodes).

31. Sotelo and Baran (2001) Objective (1): Minimise (a) the pump Water quality: N/A.  The number of pump switches is used as a surrogate measure for pump 
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MO
Optimal pump operation 
considering both energy and 
demand charges using SPEA.

operating costs (energy consumption charge).
Objective (2): Minimise (a) the number of 
pump switches.
Objective (3): Minimise (a) the difference 
between initial and final water levels in tanks.
Objective (4): Minimise (a) max (daily) power 
peak (demand charge).
Constraints: (1) Min/max reservoir water 
levels, (2) min/max pipeline pressure 
constraints.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on, for each hour of 
the day).
Note: One MO model including all objectives.

Network analysis: 
Simplified hydraulic 
model, mass balance 
mathematical model 
(Ormsbee and Lansey 
1994), EPS.
Optimisation method: 
SPEA.

maintenance costs.
 Max daily peak power is minimised, because it may be penalized by 

some electricity companies if it exceeds a contracted value.
 Time horizon is 24 hours divided into 1-hour intervals, considering 

two energy tariffs and three demand loads (low, medium and high).
 Constraints are handled by a heuristic algorithm.
 Test networks: (1) Simplified system with 1 source, 5 pumps and 

1 elevated reservoir (based on the main pump station in Asuncion, 
Paraguay).

32. Biscos et al. (2002)
SO
Optimal operation of drinking 
WDSs using MINLP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) weighted sum of squared deviations of 
storage volumes, (c) weighted sum of squared 
deviations of chlorine concentrations from set 
points.
Constraints: (1) Valve openings between 0 
and 1, (2) min/max flows in pipes, (3) 
min/max storage volumes, (4) min/max 
chlorine concentrations.
Decision variables: (1) Continuous valve 
statuses (0 to 1), (2) binary valve statuses (0 or 
1), (3) binary pump switching.

Water quality: Chlorine 
(first order decay).
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
Unspecified MINLP 
solver.

 The optimisation problem is formulated as a MINLP problem.
 The model of the water distribution network is based on the use of a 

standard element. The standard element consists of a vessel with one 
input leg and two output legs. The vessel is assigned a liquid volume 
and chlorine concentration, whereas legs are associated with pressure 
available at their ends, valve statuses and pipe flows. The standard 
elements are linked together to define the entire system.

 Time horizon is 48 hours. The optimisation is formulated as a 
predictive control problem with a moving period of 12 hours ahead of 
the present time.

 Test networks: (1) A portion of the Durban WDS with 1 reservoir, 
2 pumps and 4 storages, South Africa.

33. Tryby et al. (2002)
SO
Optimal location and injection 
doses of booster disinfectant 
stations for drinking WDSs using 
MILP.

Objective (1): Minimise (a) the total 
disinfectant mass applied.
Constraints: (1) Min/max disinfectant 
concentrations at monitoring nodes, (2) zero 
disinfectant mass if a booster station is not 
present, (3) max number of booster 
disinfectant stations, (4) nonnegative dosage 
multipliers.
Decision variables: (1) Presence of a booster 
disinfectant station at network location 
(binary, 0 = no, 1 = yes), (2) dosage multiplier 
(continuous).

Water quality: Chlorine 
(first order kinetics for 
chlorine decay).
Network analysis: 
EPANET (EPS).
Optimisation method: 
CPLEX (ILOG 2001) 
using the simplex 
algorithm.

 According to Boccelli et al. (1998), a principle of linear superposition 
is used for disinfectant dosage responses.

 System hydraulic dynamics, and therefore the system demands which 
drive them, are periodic over a 24-hour cycle. Disinfectant dosage rate 
and disinfection concentration dynamics are assumed to be also 
periodic.

 The tradeoff between the average disinfectant mass dosage rate and the 
number of disinfectant booster stations is examined. It was found out 
that the total average mass dosage rate depends not only on the number 
of sources, but also on how those sources are operated. “The total 
dosage rate decreases significantly as the first few booster stations are 
added-after which the marginal improvement in the total dosage rate 
per booster station diminishes”.
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 It is concluded that booster disinfection has the potential to reduce 
aggregate exposure of the population to chlorine, while simultaneously 
improving disinfectant residual in the network periphery.

 Test networks: (1) WDS with 1034 links (incl. 829 nodes) in eastern 
U.S.

34. Biscos et al. (2003)
SO
Optimal operation of drinking 
WDSs in real-time considering 
pumps, valves and water quality 
requirements using MINLP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) weighted sum of squared deviations of 
storage volumes, (c) weighted sum of squared 
deviations of chlorine concentrations from set 
points.
Constraints: (1) Min/max storage volumes, (2) 
min/max chlorine concentrations, (3) valve 
openings between 0 and 1.
Decision variables: (1) Continuous valve 
statuses (0 to 1), (2) binary valve statuses (0 or 
1), (3) discrete pump statuses.

Water quality: Chlorine 
(first order decay).
Network analysis: Explicit 
mathematical formulation 
(unsteady state). The 
hydraulic equations are 
simplified to be linear.
Optimisation method: 
GAMS using MINLP 
solvers (Brooke et al. 
1998).

 Extension of the paper by Biscos et al. (2002).
 The optimization is realised in real-time, with a predictive control 

mechanism of 8 hours ahead of present time. The model requires the 
anticipation of a consumer demand profile, which is obtained from 
historical data stored by the SCADA system. The actual optimised 
volumes in storages and concentrations are used in the calculations at 
the next time step. With the time horizon of 24 hours, 32 hours of data 
should be fed into the model.

 The optimisation procedure is based on a network model with a basic 
element, which consists of one input and two outputs, linked through a 
vessel of variable volume. Different components of the network such 
as pipes, storages, valves and pumps are all defined using the same 
basic element. The overall network is defined by linking those basic 
elements.

 Test networks: (1) Network with 1 source, 4 storages, 1 pump station, 
4 binary valves.

35. Cohen et al. (2003)
SO
Comparison of optimisation 
methods for solving optimal 
operation of multiquality WDSs.

Objective (1): Minimise the cost of operation 
including (a) the water supply costs from 
sources, (b) water treatment costs, (c) 
transportation costs (related to hydraulic 
properties of a pipe), (d) yield reduction costs, 
(e) penalty costs for violating water quality 
constraints.
Constraints: (1) Quality parameter function 
(interdependency of quality parameters), (2) 
pipe discharge limits, (3) supply discharge 
limits, (4) water quality limits, (5) treatment 
limits on removal ratios.
Decision variables: (1) Water flow, (2) water 
quality distribution, (3) removal ratios in the 
treatment plants.

Water quality: Salinity, 
magnesium, sulphur all 
considered as conservative.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: 
Decomposed projected 
gradient (DPG) method 
and sequential quadratic 
programming (SQP) 
method are compared.

 Extension of the papers by Cohen et al. (2000a,c) using two DPG 
approaches, full mixing step (FMS) and partial mixing step (PMS), 
being tested against SQP.

 Several scenarios (referred to as ‘cases’) are tested. These scenarios 
include modifications of the network (i.e. absence or presence of 
WTPs), the number of water quality parameters, constraints, cost of 
water at sources, penalty gain factor values, starting points (i.e. initial 
solutions), scaling (i.e. decision variables and/or their coefficients are 
on different scales). Scaling issues arise when treatment plants are 
introduced.

 It was found that SQP obtains slightly better solutions for small 
networks, but is sensitive to the penalty gain factor, the choice of 
starting points and scaling. For bigger networks (20-50 pipes and 
nodes), SQP did not reach a feasible optimal solution.

 Test networks: (1) Water supply system in the Arava Valley (incl. 9 
nodes), Southern Israel (Cohen et al. 2000c), (2) WDS of the Central 
Arava region (incl. 38 nodes), Southern Israel (Cohen 1991).

36. Dandy and Gibbs (2003)
SO

Objective (1): Minimize (a) the pump 
operating costs (energy consumption charge).

Water quality: Chlorine.
Network analysis: 

 Time horizon is 48 hours, but only last 24 hours are considered to 
remove effects of initial conditions. Two energy tariffs are used, peak 
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Optimal operation of drinking 
WDSs considering pumps and 
water quality requirements using 
GA.

Constraints: (1) Min/max chlorine 
concentrations.
Decision variables: (1) Tank trigger levels for 
energy peak and off-peak periods to control 
pumps (different trigger levels may be set for 
peak and off-peak periods), (2) concentration 
of chlorine downstream of the pump.

EPANET (EPS).
Optimisation method: GA.

and off-peak.
 The system was first optimised without considering water quality. The 

GA results were then verified by complete enumeration and suitable 
GA parameters (i.e. population size) selected.

 When taking into account water quality, the tank trigger levels are 
different than those when considering pumping costs only. The upper 
trigger level for the water quality case is lower during the peak period 
so as to reduce the detention time and loss of chlorine in the tank.

 The tank trigger levels do not appear too sensitive to variations in 
demands neither are they too sensitive to the min required chorine 
concentration in the network.

 Test networks: (1) Hypothetical network (incl. 15 nodes) with 1 
reservoir from which water is pumped into a high level tank, which 
gravity feeds distribution system of 19 pipes and 6 loops.

37. Kelner and Leonard (2003)
MO
Optimal pump operation 
considering both fixed and 
variable speed pumps using GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the number of 
pump switches.
Constraints: (1) Recovery of the initial 
reservoir water level at the end of simulation, 
(2) customer demands satisfied at any time, 
(3) min/max reservoir water levels.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on) for each hour of 
the day, (2) rotating speed of the pump (real), 
(3) pressure loss coefficient for the control 
valve (real).
Note: One MO model including both 
objectives.

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: 
Genetic algorithm for 
pump scheduling (GAPS).

 The number of pump switches is used as a surrogate measure for pump 
maintenance costs. Both fixed and variable speed pumps are used.

 Time horizon is 24 hours divided into 1-hour intervals.
 GAPS combines ranking by multiple objective genetic algorithm 

(MOGA) (Fonseca and Fleming 1993) and penalised tournament 
selection scheme.

 Gaps is written in C++ and was applied to several test cases by Poloni 
and Pediroda (2000); Van Veldhuizen and Lamont (1998); Zitzler et 
al. (2000) involving both continuous and discrete variables.

 Test networks: (1) Real system with 3 reservoirs, 1 pump station with 
3 pumps and 3 customers, located in Liege, Belgium.

38. Munavalli and Kumar (2003)
SO
Optimal scheduling of booster 
chlorine stations for drinking 
WDSs using GA.

Objective (1): Minimise (a) the squared 
deviation of the chlorine concentrations from 
a min required value at monitoring nodes, (b) 
penalty costs for violating min/max chlorine 
concentrations at monitoring nodes.
Constraints: (1) Min/max chlorine 
concentrations at monitoring nodes.
Decision variables: (1) Chlorine dosages 
applied at water quality sources over discrete 
time intervals (binary).

Water quality: Chlorine.
Network analysis: 
Network hydraulics (EPS) 
solved by Tewarson-Chen 
adaptation of the Newton-
Raphson iterative 
technique, water quality by 
Lagrangian time-driven 
method (Liou and Kroon 
1987).
Optimisation method: GA.

 The optimisation problem is formulated as a NLP problem.
 It is assumed that chlorine dosage at water quality sources and network 

dynamics are cyclic over a simulation period. Time horizon is 24-672 
hours depending on network size.

 The location of water quality sources is determined through trial 
simulations. Water quality sources, at which chlorine dosages are 
estimated, include concentration, flow-paced (booster), set point or 
mass rate types.

 Improved GA is used which includes niche operator and creep 
mutation. Water quality analysis is run for each iteration, which 
represents a considerable computational expense.
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 Both linear and nonlinear chlorine reaction kinetics are used. 
A principle of linear superposition is utilised for linear kinetics. It 
helps to compute chlorine concentrations without running water 
quality simulation model.

 Test networks: (1) WDS of Brushy plains zone of the South Central 
Connecticut Regional Water Authority (incl. 34 nodes), U.S. (Clark et 
al. 1993; Boccelli et al. 1998), (2) North Marin Water District (incl. 91 
nodes) (EPANET Example 3 (USEPA 2013)), (3) a portion of 
Bangalore city WDS (Kalasipalyam network) (incl. 23 nodes).

39. Cohen et al. (2004)
SO
Sensitivity of total operating costs 
of a multiquality WDS to various 
parameters of the problem using 
NLP.

Objective (1): Minimise the cost of operation 
including (a) the water supply costs from 
sources, (b) water treatment costs, (c) 
transportation costs (related to hydraulic 
properties of a pipe), (d) yield reduction costs, 
(e) penalty costs for violating water quality 
constraints.
Constraints: (1) Quality parameter function 
(interdependency of quality parameters), (2) 
pipe discharge limits, (3) supply discharge 
limits, (4) water quality limits, (5) treatment 
limits on removal ratios.
Decision variables: (1) Water flow, (2) water 
quality distribution, (3) removal ratios in the 
treatment plants.

Water quality: Salinity.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: 
Projected gradient method.

 Extension of the paper by Cohen et al. (2000a) testing sensitivity of 
the solution to income from unit crop yield, water quality limits, 
conveyance costs, network topology and supply capacity of the source 
with the following outcomes.

 Increase in the unit income from crop yield causes an increase in the 
total costs because more fresh water is used to increase the income 
from agriculture.

 The total costs decrease with the increase in salinity limits, however 
the cost change is not significant due to low percentage of water used 
for drinking purposes.

 The effect of conveyance cost as well as the supply capacity of the 
sources on the total costs is relatively small.

 Overall, the highest sensitivity displays the income from unit crop 
yield.

 Test networks: (1) WDS of the Central Arava region (without WTPs) 
(incl. 37 nodes), Southern Israel (Cohen 1991).

40. Goldman et al. (2004)
SO
Optimal operation of drinking 
WDSs including pumps and 
chlorine booster stations using 
NLP and SA.

Objective (1): Minimize (a) the deviations of 
the actual constituent concentrations from the 
desired values, (b) penalty function for 
violating bound constraints.
Objective (2): Minimize (a) the total pump 
operation time, (b) as above.
Objective (3): Minimize (a) the pump 
operating costs (energy consumption charge), 
(b) as above.
Objective (4): Minimise (a) the amount of 
chlorine used by chlorine booster stations, (b) 
as above.
Constraints (objective (1)): Lower/upper 
bounds on (1) pump operation time, (2) nodal 
pressure head, (3) storage water levels.

Water quality: 1) Non-
conservative parameter, 
chlorine.
Network analysis: 
EPANET (EPS).
Optimisation method: NLP 
solver GRG2 (Lasdon and 
Waren 1984), SA.

 Mathematical programming is used to solve optimisation problems 
with objectives (1)-(3) (see also Sakarya and Mays (1999)), SA to 
solve optimisation problems with objectives (3)-(4).

 Time horizon is: 12 days with 2-hour intervals for mathematical 
programming approach, 1 day with 1-hour intervals for SA (pump 
energy optimisation, objective (3)), and 7 days with 6-hour intervals 
(chlorine booster optimisation, objective (4)).

 For pump energy optimisation (objective (3)), mathematical 
programming and SA are compared. NLP required about one third of 
the iterations than SA. However, SA was shown to be more flexible 
and adaptable than NLP. It is also noted that many unbalanced 
unfeasible solutions existed in the vicinity of the optimum solution of 
SA in contrast to NLP.

 For chlorine booster optimisation (objective (4)), the hydraulic 
conditions of the system are constant, with demands and flow rates 
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Constraints (objectives (2-3)): (1)-(3) as 
above, (4) lower/upper bounds on nodal 
constituent concentrations, (5) tank volume 
deficit at the end of simulation (only for SA 
approach).
Constraints (objective (4)): (1) Lower/upper 
bounds on nodal constituent concentrations.
Decision variables (objectives (1-3)): (1) 
Pump controls.
Decision variables (objective (4)): (1) Flow 
rate at the chlorine booster stations.
Note: Four SO models, each including one 
objective.

repeated every 24 hours. Chlorine booster pumps are treated as sources 
with fixed concentration. Two cases are analysed, the first with only 1 
chlorine booster station, the second with 6 chlorine booster stations. 
The chlorine usage of the former case is considerably higher than the 
chlorine usage of the later case.

 Challenges noted: No model incorporates design, operation and 
reliability of WDS together, no universally accepted definition of 
reliability, etc.

 Test networks: (1) North Marin Water District Zone 1 (incl. 91 nodes) 
(EPANET Example 3 (USEPA 2013)), (2) WDS for city of Austin 
Northwest B pressure zone (incl. 98 nodes), Texas (Brion and Mays 
1991), (3) Cherry Hill-Brushy Plains (incl. 34 nodes), South Central 
Connecticut Regional Water Authority (data same as in Boccelli et al. 
(1998)).

41. Moradi-Jalal et al. (2004)
SO
Optimal design and operation of 
irrigation networks using GA.

Objective (1): Minimise the total annual costs 
including (a) the pump operating costs (energy 
consumption charge) and maintenance costs, 
(b) depreciation cost of the initial investment.
Constraints: (1) Max pump discharge, (2) total 
pump discharge equals to total demand for 
each time interval, (3) min/max pumping 
heads.
Decision variables: (1) Pump system design 
including the type and the number of pumps, 
(2) pump system operation.

Water quality: N/A.
Network analysis: 
Simplified hydraulic 
simulation within 
WAPIRA program 
(unsteady state).
Optimisation method: 
WAPIRRA program using 
GA.

 WAPIRRA software is developed to be used by operators. It is 
spreadsheet based and uses Microsoft Excel for input data and output 
results. The software can work with any number of pumps, pump 
types, time steps, and different unit energy costs on every time step, 
but the maximum number of pumps used in a station is limited.

 Time horizon is 1 year divided into monthly intervals.
 Results for the optimum pump set are compared with 3 pre-sets of 

practical design. It is found out that savings in annual depreciation cost 
between the optimum set and pre-sets are not significant. The main 
savings, nearly 33%, occurred in the annual pump operating cost due 
to energy consumption.

 Test networks: (1) The main pumping station of the Farabi 
Agricultural and Industrial Project, Iran.

42. Ostfeld and Salomons (2004)
SO
Optimal operation of multiquality 
WDSs including pump energy 
costs, water treatment costs and 
purchasing water costs using GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) water treatment costs, (c) purchasing water 
costs.
Constraints: (1) Min/max pressure heads at the 
consumer nodes, (2) min/max concentrations 
at the consumer nodes, (3) max removal ratios 
at the treatment facilities, (4) max permitted 
amounts of water withdrawals at the sources, 
(5) tank volume deficit at the end of 
simulation.
Decision variables: (1) Scheduling of the 
pumping units (binary), (2) control valve 

Water quality: Salinity.
Network analysis: 
EPANET (EPS).
Optimisation method: 
OptiGA (Salomons 2001).

 Time horizon is 24 hours, with a varied energy tariff and unsteady 
water flow conditions. It is noted that cyclic water quality behaviour is 
not accomplished, so the results depend, to some extent, on the initial 
settings of the concentrations at the nodes.

 Seven sensitivity analyses are undertaken, which explore the impact of 
data and constraints modifications on optimal solution. Sensitivity 
analyses include increasing unit water treatment cost at a WTP, 
increasing demand at a node, excluding a control valve, increasing unit 
water purchase cost at a source, increasing threshold concentration 
constraint at several nodes, switching a node from being a consumer 
node to being a source node, converting a tank into 3 equal floating 
tanks, reducing the elevation of the highest consumer node.

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand 
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settings (i.e. valve openings) (real), (3) 
treatment removal ratios at the treatment 
facilities (real).

nodes), (2) EPANET Example 3 (incl. 94 nodes) (USEPA 2013).

43. Prasad et al. (2004)
MO
Optimal location and injection 
rates of booster disinfectant 
stations for drinking WDSs using 
NSGA-II.

Objective (1): Minimise (a) the total 
disinfectant dose.
Objective (2): Maximise (a) the volumetric 
percentage of water supplied with disinfectant 
residuals within specified limits, titled ‘safe 
drinking water’ (SDW).
Constraints: (1) Nonnegative disinfectant 
doses, (2) lower bound on the value of the 
objective (2), (3) upper bound on disinfectant 
concentrations at monitoring nodes.
Decision variables: (1) Locations of booster 
disinfection stations (integer), (2) disinfection 
injections schedules (real).
Note: One MO model including both 
objectives.

Water quality: Disinfectant 
(first order kinetics for 
disinfectant decay).
Network analysis: 
EPANET (EPS).
Optimisation method: 
NSGA-II.

 The theory of linear superposition is used for water quality modelling 
to calculate concentrations at network nodes. All demand nodes are 
considered as monitoring nodes.

 Hydraulics and booster injections are assumed to be cyclic, with a 
period of 24 hours. Time horizon is 1,008 hours.

 Both constant mass and flow proportional type boosters are 
considered.

 Tradeoffs between (i) disinfectant dose and the number of booster 
stations, and (ii) disinfectant dose and percentage of SDW (level of 
constraint satisfaction) are presented. It is concluded that “the addition 
of the first few booster stations reduces the total disinfectant dose 
significantly, after which the rate of reduction is insignificant”. 
Additionally, “there is a critical point in the level of constraint 
satisfaction (about 99% SDW), after which the disinfectant dosage rate 
increases significantly in order to satisfy the remaining constraints”.

 Test networks: (1) Real network supplied by gravity (incl. 829 nodes), 
eastern U.S. (Tryby et al. 2002).

44. Propato and Uber (2004a)
SO
Optimal location and injection 
rates of booster disinfectant 
stations for drinking WDSs using 
mixed integer quadratic 
programming (MIQP).

Objective (1): Minimise (a) the squared 
deviation of the disinfectant (i.e. chlorine) 
concentration from desired values.
Constraints: (1) Zero disinfectant doses if a 
booster station is not present, (2) max feasible 
value of disinfectant doses, (3) max number of 
booster disinfectant stations, (4) nonnegative 
disinfectant doses.
Decision variables: (1) Disinfectant doses (i.e. 
injections) (continuous), (2) presence of 
a booster disinfectant station at network 
location (binary, 0 = no, 1 = yes).

Water quality: Chlorine.
Network analysis: 
EPANET (EPS).
Optimisation method: 
MATLAB (Moler 1980) 
using branch-and-bound 
algorithm (Bemporad and 
Mignone 2001).

 Extension of the paper by Propato and Uber (2004b) including 
locations of booster disinfectant stations as decision variables.

 The optimisation problem is formulated as a MIQP problem with 
linear constraints. The size of problem is dependent only on the 
number of booster stations and injection rates and is independent on 
the number of consumer nodes or the size of the network.

 Tradeoff between the number of booster disinfectant stations and water 
quality across the network is investigated. Conclusions are drawn for 
particular locations and dosages of chlorine booster stations and their 
impact on water quality across the network.

 Test networks: (1) WDS with 1 source, 1 pump station, 1 tank (incl. 34 
nodes) (Clark et al. 1993; Boccelli et al. 1998).

45. Propato and Uber (2004b)
SO
Optimal injection rates of booster 
disinfectant stations for drinking 
WDSs using quadratic 
programming (QP).

Objective (1): Minimise (a) the squared 
deviation of the disinfectant (i.e. chlorine) 
concentration from desired values.
Constraints: (1) Nonnegative disinfectant 
doses.
Decision variables: (1) Disinfectant doses (i.e. 
injections).

Water quality: Chlorine.
Network analysis: 
EPANET (EPS).
Optimisation method: 
MATLAB (Moler 1980) 
using linear least square 
(LLS) solver.

 The locations of booster stations are assumed to be known.
 Disinfectant doses are periodic over 24-hour cycle. Time horizon is 

several days to reach stationary conditions.
 Two chlorine source models are used: mass booster and flow-paced 

booster, because the input-output dynamics is linear.
 The optimisation problem is formulated as a LLS problem. Objective 

function includes arbitrary weights on the contribution of disinfectant 
residual at each customer node. The paper includes comparison of LLS 
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approach with LP approach of Boccelli et al. (1998).
 “Booster disinfection can be effective in reducing network-wide 

variation in disinfectant residual, while reducing the total mass of 
disinfectant used”.

 Test networks: (1) WDS with 1 source, 1 pump station, 1 tank (incl. 34 
nodes) (Clark et al. 1993; Boccelli et al. 1998).

46. Van Zyl et al. (2004)
SO
Optimal pump operation using 
hybrid GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for volume deficit in tanks at 
the end of the simulation period, (c) penalty 
costs for violating the limit on the number of 
pump switches.
Constraints: (1) Min/max water levels in 
tanks, (2) no volume deficit in tanks at the end 
of the simulation period, (3) limit on the 
number of pump switches.
Decision variables: (1) Tank trigger levels for 
energy peak and off-peak periods to control 
pumps (different trigger levels may be set for 
peak and off-peak periods).

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
Hybrid GA, where GA is 
combined with 
2 hillclimber (local) search 
methods, namely Hooke 
and Jeeves method, and 
Fibonacci method.

 Time horizon is 24 hours divided into 1-hour intervals.
 GA identifies the region of an optimal solution and subsequently 

a hillclimber method finds a local optimum. The process is repeated 
until the termination criteria are met.

 Due to the nature of the problem, hillclimber search methods are 
limited to methods, which use objective function values, not gradients. 
Hook and Jeeves method gives better results than Fibonacci method.

 The efficiency of the hybrid GA is compared to pure GA and pure 
Hook and Jeeves method. The hybrid GA gives better solution and 
converges with the significantly lower number of function evaluations 
compared to pure GA. Pure Hooke and Jeeves method gives inferior 
solutions compared to both the hybrid GA and pure GA.

 Test networks: (1) Small water distribution network with 1 source, 1 
main pump station, 2 tanks at different elevations and 1 booster pump 
station (incl. 13 nodes), (2) Richmond WDS (incl. 836 nodes), UK.

47. Baran et al. (2005)
MO
Optimal pump operation 
considering both energy and 
demand charges using multiple 
evolutionary algorithms (EAs) 
being compared.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the number of 
pump switches.
Objective (3): Minimise (a) the difference 
between initial and final water levels in tanks.
Objective (4): Minimise (a) max (daily) power 
peak (demand charge).
Constraints: (1) Min/max reservoir water 
levels, (2) min/max pipeline pressure 
constraints.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on, for each hour of 
the day).
Note: One MO model including all objectives.

Water quality: N/A.
Network analysis: 
Simplified hydraulic 
model, mass balance 
mathematical model 
(Ormsbee and Lansey 
1994), EPS.
Optimisation method: 
SPEA, NSGA, NSGA-II, 
CNSGA (controlled elitist 
nondominated sorting 
genetic algorithm), NPGA 
(niched Pareto genetic 
algorithm), MOGA are 
compared.

 Extension of the paper by Sotelo and Baran (2001) applying multiple 
EAs.

 Optimisation problem is solved by six EAs (listed on the left). Unlike 
other EAs, SPEA works with two populations, where the second 
(archive) population stores the best solutions found during algorithm 
iterations.

 Results from six EAs are compared using a set of six metrics proposed 
in Van Veldhuizen (1999). Average metric’s values from 10 typical 
runs of each EA are used for comparison. SPEA gives the best overall 
results, followed by NSGA-II.

 It is noted that to conduct a fair comparison of EAs is difficult due to 
various algorithm parameters, which affect the quality of the results 
and the efficiency of the algorithm.

 Test networks: (1) Simplified system with 1 source, 5 pumps and 
1 elevated reservoir (based on the main pump station in Asuncion, 
Paraguay).

48. Lopez-Ibanez et al. (2005)
MO
Optimal pump operation using 

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the number of 

Water quality: N/A.
Network analysis: 
EPANET (EPS).

 The number of pump switches is used as a surrogate measure for pump 
maintenance costs.

 Time horizon is 24 hours divided into 1-hour intervals, with two 
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SPEA2. pump switches.
Constraints: (1) Pressures at demand nodes, 
(2) min/max tank water levels, (3) tank 
volume deficit at the end of simulation.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on, for each hour of 
the day).
Note: One MO model including both 
objectives.

Optimisation method: 
SPEA2.

electricity tariffs used. Fixed speed pumps are considered only.
 Constraints are incorporated using a methodology based on the 

dominance relation (Deb and Jain 2003) rather than penalty function.
 The results are assessed by means of empirical attainment surfaces (da 

Fonseca et al. 2001). The number of functions evaluations is 6,000 
with 30 repetitions of each configuration.

 Test networks: (1) Small water distribution network (incl. 13 nodes) 
(Van Zyl et al. 2004).

49. Ostfeld (2005)
SO
Optimal design and operation of 
multiquality WDSs including total 
construction costs and annual 
operation costs using GA.

Objective (1): Minimise (a-D?) the 
construction costs of pipes, tanks, pump 
stations and treatment facilities, (b-OP??) 
annual operation costs of pump stations and 
treatment facilities.
Constraints: (1) Min/max heads at consumer 
nodes, (2) max permitted amounts of water 
withdrawals at sources, (3) tank volume 
deficit at the end of simulation, (4) min/max 
concentrations at consumer nodes, (5) removal 
ratio constraints.
Decision variables: D: (1) Pipe diameters, (2) 
tank max storage, (3) max pumping unit 
power, (4) max removal ratios at treatment 
facilities, OP: (5) scheduling of pumping 
units, (6) treatment removal ratios.

Water quality: Not 
specified conservative 
parameters.
Network analysis: 
EPANET (EPS).
Optimisation method: GA.

 Time horizon is 24 hours, with a varied energy tariff and unsteady 
water flow conditions. Similar to Ostfeld and Salomons (2004), cyclic 
water quality behaviour is not accomplished, so the results depend on 
the initial settings of the concentrations at the nodes.

 Multiple loading conditions (demands) are used.
 Sensitivity analysis is performed with the following modifications to 

data or constraints. Test network (1): increased min pressure constraint 
at one consumer node, increased max concentration limit for all 
consumer nodes, increased operational unit treatment cost coefficient. 
Test network (2): reduced unit power cost of pump construction and 
energy tariffs, altered pressure and concentration constraints at one 
consumer node, decreased elevation at one consumer node.

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand 
nodes) (Ostfeld and Salomons 2004), (2) Anytown network (Walski et 
al. 1987) with modifications (incl. 16 nodes).

50. Kurek and Brdys (2006)
MO
Optimal location of booster 
chlorine stations for drinking 
WDSs using NSGA-II.

Objective (1): Minimise (a) the number of 
booster chlorine stations.
Objective (2): Minimise (a) the mean value of 
chlorine concentrations.
Objective (3): Minimise (a) the mean value of 
instances of not meeting quality requirements.
Constraints: (1) Min/max number of booster 
stations, (2) min/max chlorine concentrations, 
(3) min chlorine concentration at treatment 
plants.
Decision variables: (1) Presence of a booster 
station at network node (binary, 0 = no, 1 = 
yes), (2) chlorine concentrations at booster 
stations and treatment plants (real).
Note: One MO model including all objectives.

Water quality: Chlorine
Network analysis: 
EPANET (EPS).
Optimisation method: 
MATLAB using modified 
NSGA-II.

 Multiple demand scenarios are considered.
 24-hour chlorination patterns are used for booster stations as well as 

water treatments plants.
 Objective (2) allows defining min preferred chlorine concentration in 

the network by a user.
 It was identified that chlorine concentrations in the network decrease 

with the increased number of chlorine booster stations. “However at 
some point adding another booster stations yields smaller 
improvements”.

 It was also identified that different demand scenarios require different 
number of chlorine booster stations to ensure safe drinking water.

 Test networks: (1) EPANET Example 3 (incl. 92 nodes) (USEPA 
2013).

51. Ostfeld and Salomons (2006) Objective (1) ‘Min Cost’: Minimise (a) the Water quality: Chlorine  Pump schedules are optimised in conjunctions with booster 
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SO
Optimal operation of drinking 
WDSs including scheduling of 
pumps, scheduling of booster 
chlorination stations and their 
locations using GA.

pump operating costs (energy consumption 
charge), (b) booster chlorination operational 
injection costs, (c) booster chlorination design 
costs.
Objective (2) ‘Max Protection’: Minimise (a) 
the difference between actual and max desired 
chlorine concentrations at consumer nodes.
Constraints: (1) Min/max pressure at the 
consumer nodes, (2) min/max chlorine 
concentrations at the consumer nodes, (3) tank 
volume deficit at the end of simulation.
Decision variables: (1) Locations of booster 
chlorination stations (integer), (2) pump 
schedules (binary), (3) control valve settings 
(i.e. valve openings) (real), (4) booster 
chlorination injection rates.
Note: Two SO models, each including one 
objective.

(first order decay).
Network analysis: 
EPANET (EPS).
Optimisation method: 
OptiGA (Salomons 2001).

chlorination injection rates, because resulting disinfectant 
concentrations depend on the flow regime in the network, thus pump 
schedules.

 Objective (2) ‘Max Protection’ maximises the system protection by 
maintaining chlorine residual as close as possible to upper bound level.

 Time horizon is 24 hours, with a varied energy tariff.
 Five sensitivity analyses are undertaken, which include an addition of 

an extra booster chlorination station, operation of booster chlorination 
stations for Max Protection, change of a booster chlorination cost 
coefficient, change of a lower chlorine concentration bound, exclusion 
of components (b) and (c) from the objective (1) ‘Min Cost’.

 It is identified that “the two problems of minimising energy cost and 
minimising the total CL [chlorine] dose injected are mutually 
connected-calling upon a multi-objective optimisation approach to 
further explore the tradeoff between these two goals“.

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 
2013).

52. Prasad and Walters (2006)
SO
Minimising water age by 
rerouting flows in the network to 
improve water quality using GA.

Objective (1): Minimise (a) the water age at 
network nodes (max, weighted average and 
average water age are considered), (b) penalty 
costs for violating pressure head.
Constraints: (1) Min pressure at the nodes, (2) 
upper limit on the flow velocity in the pipes.
Decision variables: (1) Settings of isolation 
valves (open/closed) represented by 
open/closed pipes.

Water quality: Water age 
(as a surrogate measure for 
water quality).
Network analysis: 
EPANET (steady state, but 
results are tested by 
conducting an EPS).
Optimisation method: GA.

 It is noted that various strategies can be used to minimize water age in 
the network, but this paper considers pipe closures only.

 The type of GA used generates a connected tree network. This tree 
network is to ensure connectivity throughout the whole network, 
which standard GA algorithms fail to produce. The decision variables 
are represented by two sets of pipes. The first set represents pipes 
which are open and form a tree. The second set contains pipes which 
are open and addition of which to the tree layout form loops.

 Test networks: (1) Network with 1 source and 47 pipes (incl. 34 
nodes), (2) real network in UK with 632 pipes (incl. 535 nodes).

53. Jamieson et al. (2007)
SO
Optimal operation of WDSs in 
real-time using ANN and GA, the 
first paper of POWADIMA series.

Objective (1): Minimise (a) the pump 
operating costs.
Constraints: Not specified.
Decision variables: (1) Pump controls 
(binary), (2) valve controls (binary).

Water quality: N/A.
Network analysis: ANN 
(process-driven, EPS) as a 
substitute for a hydraulic 
simulation model.
Optimisation method: GA.

 The paper presents an introduction to the POWADIMA research 
project. It describes the concept of a design of a real-time control 
system for WDSs. In this concept, ANN is proposed to replace a 
hydraulic simulator to increase the computational efficiency.

 The POWADIMA project is divided into 7 work packages, split 
between several universities. Subsequent papers (Alvisi et al. 2007; 
Martinez et al. 2007; Rao and Alvarruiz 2007; Rao and Salomons 
2007; Salomons et al. 2007) describe various parts of the project.

 SCADA and demand forecast are used.
 ANN model is to be tested on Anytown network and applied to two 

real networks.
 Test networks: (1) Anytown network (Walski et al. 1987) with 
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modifications (incl. 19 nodes), (2) portion of Haifa WDS (incl. 112 
nodes), Israel, (3) Valencia WDS (incl. 725 nodes), Spain.

54. Kim et al. (2007)
SO
Optimal pump operation using 
integer programming (IP).

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Reservoir lower limitation 
(determined by a statistical analysis based on 
correction of the demand forecasting model), 
(2) pump limitation.
Decision variables: (1) The number of pumps 
required.

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: 
LINGO (LINDO 2014) 
using IP.

 Three methods were tested and compared for a 3 month period: (i) 
time index, (ii) multiple regression + time index, and (iii) Fourier 
series + transfer autoregressive integrated moving average (ARIMA). 
Time index and multiple regression methods were selected to forecast 
the hourly water demands for 2 week period.

 Energy tariff varies monthly and hourly.
 Test networks: (1) Supply system in southern part of Seoul, Korea.

55. Martinez et al. (2007)
SO
Optimal operation of WDSs in 
real-time using ANN and GA, the 
sixth paper of POWADIMA 
series.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) water production costs.
Constraints: (1) Min/max pressure at demand 
nodes, (2) Min flow rate at pipes, (3) min/max 
tank water levels, (4) tank water level equal or 
above a prescribed level at a specified time 
each morning, (5) installed power capacity at 
pump stations.
Decision variables: (1) Pump settings (on/off) 
for fixed speed pumps, (2) valve settings 
representing valve openings (binary coded).

Water quality: N/A.
Network analysis: ANN 
(process-driven, EPS) as a 
substitute for a hydraulic 
simulation model (Rao and 
Alvarruiz 2007).
Optimisation method: GA.

 Optimisation package DRAGA-ANN is used (Rao and Salomons 
2007), which is linked with SCADA.

 Test network is supplied from two WTPs, each equipped with a pump 
station and a tank. There are no booster pumps and tanks in the 
network itself, so the system is dependent largely upon gravity and 
several operating valves. Fixed speed pumps are considered.

 Electricity tariffs vary hourly and monthly.
 Time horizon is 24 hours divided into 1-hour intervals. Demand 

forecast, based on seasonal, weekly and daily periodic components, is 
discussed in the fourth paper of POWADIMA series (Alvisi et al. 
2007).

 Performance of the optimisation package was evaluated by running 
optimisation for the entire year of 2001 and comparing results with 
EPANET.

 For the Valencia network, ANN is about 94 times faster than 
EPANET, while for the Haifa-A network (Salomons et al. 2007) it is 
about 25 times faster.

 Test networks: (1) Valencia WDS (incl. 725 nodes), Spain.
56. Murphy et al. (2007)
SO
Optimal operation of a large 
drinking WDS considering water 
age using GA.

Objective (1): Minimise (a) the pumping 
power costs, (b) utility turnout costs, penalty 
costs for (c) violating the turnout flow 
constraints, (d) violating reservoir water level 
constraints, (e) average water age greater than 
5 days.
Constraints: (1) Constraints on flows via the 
utility turnouts, (2) min/max reservoir levels, 
(3) min/max reservoir return levels, (4) min 
reservoir turnover.
Decision variables: (1) Pump on/off times, (2) 
flows and hours of operation for the utility 

Water quality: Water age.
Network analysis: 
EPANET (EPS).
Optimisation method: GA.

 The redevelopment of the current system of the water utility in Las 
Vegas, Energy and Water Quality Management System, is presented to 
better address water quality issues. This system is used for daily 
operational planning since 2005.

 Water age is used as a surrogate for disinfection by-products (DBP).
 3-day and 7-day operating cycles for a winter operation condition are 

used for the EPS of 27 and 28 days to allow water age to reach steady 
state.

 Large number of decision variables (for a single GA run for a 3-day 
operating cycle, there is 13,968 hourly on/off pumping decisions) was 
significantly reduced by selecting feasible pump combinations rather 
than hourly on/off decisions for each pump, and other simplifications 
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turnouts where water is purchased from 
another utility, (3) PRV settings, (4) flow 
control valves settings, (5) open/close pipe 
decisions.

of the pump schedules.
 Optimization run times are estimated to be 139 days on a single 

computer, which is unacceptable for operational needs. Therefore, 
parallel computing is used to provide more realistic times.

 Optimisation results represent 12.8% reduction in the average water 
age in reservoirs.

 Test networks: (1) Large WDS in Las Vegas valley, U.S., containing 
approximately 8,000 pipe sections, 194 pumps and 28 reservoirs (incl. 
over 6000 nodes).

57. Rao et al. (2007)
SO
Optimal operation of WDSs in 
real-time linked to the SCADA 
system including pumps and 
valves using ANN and GA.

Objective (1): Minimize (a) system operating 
costs (energy and production).
Constraints: (1) System operational 
constraints, (2) lower/upper limits on control 
variables (pump and valve settings), (3) 
lower/upper limits on state variables (tank 
water levels, pressures, flows).
Decision variables: (1) Pump settings, (2) 
valve settings (open/closed).

Water quality: N/A.
Network analysis: ANN 
(process-driven, EPS) as a 
substitute for a hydraulic 
simulation model.
Optimisation method: 
ENCOMS incorporating 
GA and ANN.

 The paper presents an extension of the POWADIMA project, where 
GA and ANN are combined in a software ENCOMS. The system is 
generic and can be applied to any WDS due to customizability; ANN 
is first run off-line for a large number of simulations, then trained and 
tested.

 Real-time control operates continually and is updated at short intervals 
by data transmitted from the SCADA and the updated demand 
forecasts. Time horizon is next 24 hours of system operation using 1-
hour time step.

 The repetitive nature of real-time control enables reduction in the 
number of generations used for the next update of the operating 
strategy. This is due to the existing operating strategy not being very 
different from the next operating strategy. The initialization process 
can be non-random, where a large portion of the current population is 
used as an initial population for the next step after the updates.

 Test networks: (1) Valencia WDS (incl. 725 nodes), Spain.
58. Rao and Salomons (2007)
SO
Optimal operation of WDSs in 
real-time using ANN and GA, the 
third paper of POWADIMA 
series.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) cost of water at sources.
Constraints: (1) Min/max pressure at junction 
nodes, (2) min/max velocities at pipes, (3) 
min/max tank water levels, (4) installed power 
capacity at pump stations.
Decision variables: (1) Pump settings (on/off) 
for fixed speed pumps, (2) pump settings for 
variable speed pumps, (3) valve settings 
representing valve openings (binary coded).

Water quality: N/A.
Network analysis: ANN 
(process-driven, EPS) as a 
substitute for a hydraulic 
simulation model (Rao and 
Alvarruiz 2007).
Optimisation method: GA.

 ANN development is described in the second paper of POWADIMA 
series (Rao and Alvarruiz 2007).

 As a constraint handling procedure, the multiplicative penalty method 
is used, in which the objective function is multiplied by a penalty 
factor proportional to the extent of the constraint violation.

 Time horizon is 24 hours divided into 1-hour intervals. Demand 
forecast, based on seasonal, weekly and daily periodic components, is 
discussed in the fourth paper of POWADIMA series (Alvisi et al. 
2007).

 A dynamic version of the method, DRAGA-ANN, is developed, where 
the updated information (such as forecasted demands for the next 
24 hours, current control settings and water levels from SCADA) is 
fed into the GA-ANN optimiser every hour in order to produce more 
up to date schedule. Only 1-hour schedules are implemented via the 
SCADA, whilst the remaining schedules are retained for re-initialising 
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the control variables at the next time interval using the updated 
SCADA data. This approach can reduce the number of generations.

 Test networks: (1) Anytown network (Walski et al. 1987) with 
modifications (incl. 19 nodes) (Rao and Alvarruiz 2007).

59. Rico-Ramirez et al. (2007)
SO
Optimal location and injection 
rates of booster disinfectant 
stations for drinking WDSs 
including uncertainties using 
stochastic decomposition 
algorithm.

Objective (1): Minimize (a) the cost of booster 
stations installation (first stage), (b) the cost of 
the disinfectant mass required to maintain 
concentration residuals within the network 
(second stage).
Constraints: (1) The total max number of 
booster stations, (2) lower/upper bounds of 
disinfectant residual concentrations, (3) max 
disinfectant dosage multiplier, (4) nonnegative 
dosage multipliers.
Decision variables: (1) Presence of a booster 
station at network node (binary, 0 = not, 1 = 
yes) (first stage), (2) disinfectant dosage 
(second stage).

Water quality: Disinfectant 
(first order decay).
Network analysis: 
EPANET (EPS).
Optimisation method: 
Stochastic decomposition 
algorithm.

 Extension of the paper by Tryby et al. (2002) incorporating 
uncertainties.

 The optimisation problem is formulated as a two stage stochastic 
problem, the first stage is a MILP problem, the second stage is a LP 
problem. It indirectly incorporates uncertainties on demands, pipe 
roughness and chemical reactions of the disinfectant via linear 
coefficients of the proposed model, which are computed through 
EPANET.

 A comparison with deterministic results is performed. The results 
indicate that the number of booster stations is larger and the total costs 
lower in the stochastic solution than in the deterministic solution. An 
explanation could be that increased flexibility and better disinfectant 
distribution exist due to the extra number of stations. However, the 
CPU time obtained in order of weeks could be prohibitive in some 
applications.

 Test networks: (1) EPANET Example 2 (incl. 34 nodes) (USEPA 
2013).

60. Salomons et al. (2007)
SO
Optimal operation of WDSs in 
real-time using ANN and GA, the 
fifth paper of POWADIMA 
series.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge.
Constraints: (1) Min pressure at demand 
nodes, (2) min/max tank water levels, (3) tank 
water level equal or above a prescribed level 
at a specified time each morning, (4) installed 
power capacity at pump stations.
Decision variables: (1) Pump settings (on/off) 
for fixed speed pumps, (2) valve settings 
(PRV).

Water quality: N/A.
Network analysis: ANN 
(process-driven, EPS) as a 
substitute for a hydraulic 
simulation model (Rao and 
Alvarruiz 2007).
Optimisation method: GA.

 Optimisation package DRAGA-ANN is used (Rao and Salomons 
2007). Optimisation runs continuously in 1-hour intervals, 
implementing a new schedule via SCADA for the current time 
interval, then waiting for the next update of the SCADA data, which is 
to be used for the subsequent optimisation run together with updated 
demands and electricity tariffs.

 Test network has hilly topography with 6 separate pressure zones, each 
supplied by a dedicated set of pumps and each containing one or more 
tanks. Network includes one PRV. Fixed speed pumps are considered.

 Electricity tariffs vary three times a day, also with seasons, weekends 
and holidays.

 Time horizon is 24 hours divided into 1-hour intervals. Demand 
forecast, based on seasonal, weekly and daily periodic components, is 
discussed in the fourth paper of POWADIMA series (Alvisi et al. 
2007).

 Performance of the optimisation package was evaluated by running 
optimisation for the entire year of 2000 and comparing results with 
EPANET.

 Test networks: (1) Haifa-A WDS (incl. 112 nodes), Israel.
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61. Ulanicki et al. (2007)
SO
Optimal operation of WDSs using 
SQP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge, 
(b) water price at sources, (c) penalty cost 
associated with the final state of reservoir 
water levels.
Constraints: (1) Min/max reservoir water 
levels, (2) min/max flows through pump 
stations, (3) the number of pumps in a pump 
station, (4) min/max pump speeds, (5) 
min/max valve openings, (6) min/max source 
flows.
Decision variables: (1) Pump controls 
(integer), (2) pump speeds (continuous), (3) 
valve controls (continuous), (4) source flows 
(continuous).

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
SNOPT, SQP algorithm 
(Gill et al. 2002).

 Both fixed and variable speed pumps are considered.
 Two stage suboptimal algorithm is used: (i) a relaxed continuous 

problem is solved to produce optimal reservoir trajectories, (ii) then a 
mixed integer solution is found using branch and bound and time 
decomposition. This paper deals with the first stage. The relaxed 
continuous problem is obtained by assuming that the integer variable 
of pump controls is continuous.

 Reduced gradients of the objective and constraint functions are 
calculated.

 Time horizon is 24 hours divided into 1-hour intervals.
 Full parameterisation (FP) approach and partial parameterisation (PP) 

approach are compared. In the FP approach, all variables (control, state 
and algebraic) are treated as decision variables while in the PP 
approach, only control variables are treated as decision variables. 
Results show that results obtained by both approaches are very similar. 
However, PP approach requires fewer iterations with fewer variables, 
and can be integrated with an existing network models, which makes it 
attractive for industry applications.

 Test networks: (1) Raw water and irrigation network (incl. 48 demand 
nodes), South of France.

62. Wu (2007)
SO
Optimal pump operation 
considering both fixed and 
variable speed pumps using fast 
messy GA (fmGA).

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max pressure at nodes, 
(2) max allowable flow velocity, (3) min tank 
water level, (4) min/max disinfectant 
concentrations. 
Decision variables: (1) Pump statuses for 
fixed speed pumps (binary, 0 = pump off, 1 = 
pump on), (2) pump speeds for variable speed 
pumps (continuous).

Water quality: 
Disinfectant.
Network analysis: Not 
specified solver (EPS).
Optimisation method: 
fmGA (Wu and Simpson 
2001).

 Constant and variable speed pumps are considered.
 Time horizon is 24 hours divided into 1-hour intervals.
 Solution for fixed speed pumps is compared with the solution for 

variable speed pumps, showing that the cost of pumping is smaller for 
variable speed pumps even though they operate continuously over 
a 24-hour period.

 Results are compared with the results of the previous study (Mays 
2000), which used mathematical programming (NLP) approach and 
SA (SA). It is illustrated that fmGA is more effective in searching for 
the optimal pump schedule.

 Test networks: (1) EPANET Example 3 (incl. 91 nodes) (USEPA 
2013), adapted from (Mays 2000).

63. Bagirov et al. (2008)
SO
Optimal pump operation using 
discrete gradient method.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for violating constraints.
Constraints: (1) Min/max pressure at nodes, 
(2) min/max tank water levels.
Decision variables: (1) On/off switches for the 
pumps (continuous), (2) pressure at each 
pump for each time interval (continuous).

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: 
Discrete gradient method 
(Bagirov 2002).

 The optimisation problem is formulated as a nonsmooth optimisation 
problem.

 Time horizon is 24 hours divided into 1-hour intervals, with peak and 
off-peak energy tariffs used.

 The number of pump switches is included in the optimisation model as 
decision variables, not as constraints. The formulation allows for the 
pump switches to occur at any time, not at given discrete time 
intervals.
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 The results are compared with the real usage in December 2006 
indicating energy cost savings.

 Test networks: (1) Simplified model of Ouyen subsystem of the 
Northern Mallee Pipeline, Victoria, Australia.

64. Ewald et al. (2008)
MO
Optimal location of booster 
chlorine stations for drinking 
WDSs using a distributed multi-
objective GA.

Objective (1): Minimise (a) the number of 
booster chlorine stations.
Objective (2): Minimise (a) the mean value of 
chlorine concentrations.
Objective (3): Minimise (a) the mean value of 
instances of not meeting quality requirements.
Constraints: (1) Min/max number of booster 
stations, (2) min/max chlorine concentrations 
at booster stations and treatment plants.
Decision variables: (1) Presence of a booster 
station at network node (binary, 0 = no, 1 = 
yes), (2) chlorine concentrations at booster 
stations and treatment plants (real).
Note: One MO model including all objectives.

Water quality: Chlorine.
Network analysis: 
EPANET (EPS).
Optimisation method: 
Distributed multi-objective 
GA (based on the island 
GA) implemented using 
grid computing).

 Objective (2) evaluates disinfectant distribution throughout the 
network.

 Objective (3) evaluates feasibility of the booster allocation and the 
corresponding control schedules.

 Several demand scenarios are considered simultaneously. These 
scenarios are defined so that meeting the constraints for each of them 
entails meeting the constraints for all practical scenarios. 

 Grid implementation of a distributed multi-objective GA is based on a 
modified island GA, which uses independent subpopulations and 
subgenerations are computed using the modified NSGA-II.

 The performance of the grid implementation is compared with a 
classic algorithm. It was found out that the algorithm with grid 
implementations reduced overall computation time and reached better 
solutions (over the same running time) than the classic algorithm.

 Test networks: (1) Chojnice drinking WDS (incl. 188 nodes), Poland.
65. Lopez-Ibanez et al. (2008)
SO
Optimal pump operation using 
ACO compared to hybrid GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max tank water levels, 
(2) min pressure at demand nodes, (3) tank 
volume deficit at the end of simulation, (4) 
max number of pump switches.
Decision variables: (1) On/off duration 
periods (in hours) for each pump (integer).

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
ACO, compared to hybrid 
GA (Van Zyl et al. 2004) 
and simple GA.

 Time horizon is 24 hours.
 The solution space is reduced by introducing a constraint on the 

number of pump switches, and having a decision variable representing 
on/off durations for each pump as opposed to a binary representation 
of on/off statuses for every hour of the day.

 Rather than using penalty function for constraint violations, the 
constraint violations are ordered by the importance and solutions are 
ranked. The ranking makes feasible solutions always preferable over 
infeasible solutions.

 Test networks: (1) Small water distribution network (incl. 13 nodes) 
(Van Zyl et al. 2004), (2) Richmond WDS (incl. 836 nodes), UK.

66. Ostfeld and Tubaltzev (2008)
SO
Optimal design and operation of 
WDSs including construction 
costs and annual operation costs 
using ACO.

Objective (1): Minimise (a) the pipe 
construction costs, (b) annual pump operation 
costs, (c) pump construction costs, (d) tank 
construction costs, (e) penalty function for 
violating pressure at nodes.
Constraints: (1) Min/max pressure at 
consumer nodes, (2) max water withdrawals 
from sources, (3) tank volume deficit at the 
end of simulation.
Decision variables: (1) Pipe diameters, (2) 

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
ACO, compared to the 
previous study also using 
ACO (Maier et al. 2003).

 Time horizon is 24 hours, with a varied energy tariff.
 Multiple loading conditions (demands) are used.
 Sensitivity analysis is performed for algorithm parameters, such as the 

maximum number of iterations, the discretisation number, a quadratic 
and triple penalty functions, the initial number of ants, the number of 
ants subsequent to initialisation, the number of best ants solutions for 
pheromone updating.

 The proposed ACO produced better results than ACO of Maier et al. 
(2003). However, it is difficult to anticipate which method is better in 
general as the performance always depends on model calibration for a 
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pump power at each time interval. specific problem.
 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand 

nodes) (Ostfeld and Salomons 2004), (2) Anytown network (incl. 16 
nodes) (Walski et al. 1987) with modifications.

67. Shamir and Salomons (2008)
SO
Optimal operation of WDSs in 
real-time using a reduced model 
(RM) and GA.

Objective (1): Minimise (a) the pump energy 
costs.
Constraints: (1) Constraints on tank water 
levels, (2) constraints on demand junction 
pressures.
Decision variables: (1) Pump statuses for 
fixed speed pumps, (2) valve statuses 
(pressure reducing and pressure regulating 
valves).

Water quality: N/A.
Network analysis: Not 
specified solver (EPS), 
RM is used.
Optimisation method: GA.

 The paper is based on the POWADIMA work. ANN is not used, 
instead a reduced (skeletonised) model of the network is developed to 
reduce the simulation time. The RM is created by an algorithm 
developed by Ulanicki et al. (1996).

 Time horizon is 24 hours, but only schedules for 1 hour ahead of the 
current time are implemented via SCADA. After 1 hour, the SCADA 
data is updated from field data, which is used for the subsequent 
optimisation run to obtain new schedules and so on.

 Unlike in the POWADIMA project, a simple demand forecast is used. 
Recorded daily quantities by pump stations in 2004 are used to 
produce demands, which are divided equally among the nodes 
according to an hourly pattern based on a similar WDS.

 The skeletonised network reduces simulation time about 15 times.
 The developed RM-GA methodology is tested for 2 months in 2004, 

January (low demands) and July (high demands). Compared to 
operation by the system operators, cost savings are in order of 10%.

 Test networks: (1) Haifa-B WDS (incl. 867 nodes, a reduced model 77 
nodes), Israel.

68. Cohen et al. (2009)
SO
Optimal operation of regional 
multiquality WDSs considering 
the total operation costs, inclusive 
of water supply, pump energy and 
water treatment costs using 
projected gradient method.

Objective (1): Minimise the total cost of 
operation including (a) the water supply costs 
from sources, (b) pump energy costs at 
boosters (c) pump energy costs at pump 
stations, (d) water treatment costs, (e) yield 
reduction costs, (f) penalty costs for violating 
water quality constraints.
Constraints: Limits on discharges for (1) 
boosters, (2) valves, (3) pump stations, (4) 
sources, (5) limits on pressure heads at 
customer nodes, (6) limits on pumping heads, 
(7) limits on opening ratio of valves, (8) 
quality parameter function (interdependency 
of quality parameters), (9) treatment limits on 
removal ratios.
Decision variables: Q-C-H problem: (1) 
circular flows, (2) removal ratios in treatment 
plants, (3) water quality distribution. Q0-H 

Water quality: Salinity, 
magnesium, sulphur all 
considered as conservative.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: 
Projected gradient method.

 Extension of the paper by Cohen et al. (2000c) using the same 
optimisation model and applied to the three following case studies: (A) 
Network without treatment plants and salinity as the only water quality 
parameter, (B) network with treatment plants and salinity as the only 
water quality parameter, (C) network with treatment plants and three 
conservative water quality parameters.

 The paper emphasises the relation between irrigation and drinking 
water supply through the same system, where there are agricultural 
irrigation customers on one hand and on the other hand village 
drinking water customers within one WDS.

 Most of the paper is devoted to describing a real regional multiquality 
network in semi-arid climate in Israel with a complete hydraulic and 
water quality solution for optimal operation.

 The results are as follows. In the case study (A), yield loss is the 
highest part of the total operation costs. In the case study (B), addition 
of treatment plants results in savings (more than one third) in the total 
operation costs, the majority of these savings are due to yield loss 
reduction. In the case study (C), there are higher total operation costs 
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problem: (4) opening ratios of valves, (5) 
configurations of pump stations, (6) 
headlosses in control valves, (7) bypass flows.

than in (B) but lower than in (A).
 Test networks: (1) WDS of the Central Arava Valley (incl. 38 nodes), 

Southern Israel.
69. Kang and Lansey (2009)
SO
Optimal operation of drinking 
WDSs in real-time combining 
optimal settings of valves and 
chlorine booster injection doses to 
improve water quality using GA.

Objective (1): Minimise (a) the difference 
between the actual and specified min chlorine 
concentration at nodes.
Constraints: (1) Min/max chlorine 
concentrations at nodes, (2) min/max pressure 
head at nodes, (3) volume deficit at tanks at 
the end of the decision period posed as limit 
on tank water level.
Decision variables: (1) Source chlorine 
injection rates, (2) booster chlorine injection 
rates, (3) control valve settings (% of valve 
closure).

Water quality: Chlorine.
Network analysis: 
EPANET (EPS, and steady 
state to predict system 
pressure).
Optimisation method: GA.

 Real-time optimisation model is presented. Control valves are used to 
alter flow distribution and direct chlorine laden-water where required.

 Demand forecasting is synthetically generated for each node during the 
simulation period by adding random deviations to base demand 
patterns. Demand forecasting is conducted every 6 hours.

 To predict pressure at nodes, steady state simulation is undertaken by 
EPANET to avoid overestimating the system pressure while demands 
are declining using an EPS.

 Decision time step is 1 hour for both demand forecasts and decision 
variables.

 For each run, only the first 6-hour solutions are implemented since a 
new set of decisions will be determined with improved demand 
forecasts after 6 hours.

 Test networks: Not specified.
70. Ormsbee et al. (2009)
SO
A review of optimisation 
formulations, both explicit and 
implicit, used for a pump 
scheduling problem.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min pressure at nodes, (2) 
pump starting time to be less than pump 
stopping time (for unrestricted explicit 
formulation).
Decision variables: (1) Pump controls.

Water quality: N/A.
Network analysis: N/A.
Optimisation method: 
N/A.

 The paper reviews approaches to formulate a pump scheduling 
problem in terms of decision variables.

 Implicit formulation: decision variables are represented by either pump 
flows, pump pressures or tank trigger levels.

 Restricted explicit formulation: decision variables are represented by 
duration (in hours) of pump operation.

 Unrestricted explicit formulation: decision variables are represented by 
start/end times for pump operations.

 Composite explicit formulation: a single decision variable is 
introduced for each pump station and each time interval. It consists of 
an integer identifying pump combination which operates and time 
interval percentage during which this pump combination operates. This 
formulation significantly reduces the total number of decision 
variables.

 Test networks: N/A.
71. Pasha and Lansey (2009)
SO
Optimal pump operation in real-
time using LP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max tank water levels, 
(2) bounds on pump station flows.
Decision variables: (1) Pump station 
discharges.

Water quality: N/A.
Network analysis: A 
simplified linear model 
(EPS).
Optimisation method: LP.

 Time horizon is 24 hours divided into 1-hour intervals.
 The optimisation problem is formulated as a LP problem, which is 

solved in real-time. Model is limited to a single tank system.
 First, the WDS physical data is collected. Second, a simplified linear 

WDS model is developed based on offline extensive simulation using 
linear regression. Third, forecast demands are derived. Four, LP model 
is formed using these demands and LP WDS model in order to 
determine the optimal pump stations discharges. Last, those discharges 
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are converted into actual pump operations.
 The global solution may not be ensured due to linearisation 

inaccuracies, but a comparable solution is obtained in real-time.
 Test networks: (1) Anytown network (incl. 19 nodes) (Walski et al. 

1987).
72. Wu and Zhu (2009)
SO
Optimal pump operation 
considering both fixed and 
variable speed pumps using 
parallel computing and GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Limits on pressure at nodes, 
(2) limits on pipe flow velocity, (3) limits on 
storage tanks.
Decision variables: (1) Pump schedules.

Water quality: N/A.
Network analysis: Not 
specified solver (EPS).
Optimisation method: 
fmGA.

 Time horizon is 24 hours.
 The paper compares different paradigms for parallel computing on a 

single multi core PC and a cluster of PCs; task parallelism, data 
parallelism and hybrid parallelism.

 Scalable and portable parallel optimisation framework is applied to a 
pump scheduling problem. The parallel computing model found the 
same solutions in less than 50% of execution time compared to the 
sequential model. It is concluded that N+1 processes seem to gain 
maximum speedup on an N-core CPU.

 Test networks: (1) EPANET Example 3 (incl. 91 nodes) (USEPA 
2013), adapted from (Mays 2000).

73. Alfonso et al. (2010)
MO, SO
Optimisation of operational 
responses by manipulating valves, 
hydrants and pumps to 
contamination of WDSs using 
NSGA-II and GA.

Objective (1): Minimise (a) the number of 
polluted nodes (NPN), polluted at least one 
time step during the simulation period.
Objective (2): Minimise (a) the number of the 
operational interventions (OIs) needed.
Constraints: (1) Positive nodal pressures, (2) 
topological checking to ensure network 
connectivity, (3) technical operational 
capacity to implement interventions.
Decision variables: (1) OIs for valves, 
hydrants and pumps (binary, 0 = 
closed/switched off, 1 = open/switched on).
Note: One MO model including both 
objectives, one SO model combining 
objectives (1) and (2) into one objective 
function.

Water quality: 
Conservative contaminant.
Network analysis: 
EPANET (EPS).
Optimisation method: MO: 
NSGAX software (Barreto 
et al. 2006) using NSGA-
II; SO: GLOBE software 
(Solomatine 1999) using 
GA.

 Objective (1) represents the damage to public health associated with 
the contamination of the network. A ‘polluted node’ is a node with 
pollution concentration above a specified threshold.

 Objective (2) represents the operational effort required to set the 
network to a desirable condition (e.g. closing certain valves and/or 
opening hydrants for flushing the contaminant). In real life 
applications, however, the actual costs associated with the OI should 
be used.

 COPA module developed in Borland Delphi is used to link 
GLOBE/NSGAX with EPANET.

 Due to the very large search space requiring an enormous 
computational effort, two-phase procedure is adopted to eliminate 
some of the decision variables during the optimisation process thus 
reduce the computation time.

 For both test networks, three scenarios (SC1 to SC3) of injecting 
contaminant into the network are analysed.

 Three basic factors exist in all solutions found, such as (i) isolating the 
contaminant, (ii) flushing it out and/or (iii) diluting it.

 Test networks: (1) Simple hypothetical network with 41 pipes and 
1 source (incl. 25 nodes), (2) real WDS in Villavicencio, Sector 11 
(incl. 247 nodes), Colombia.

74. Bene et al. (2010)
SO
Optimal pump operation using 

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge; 
demand charge included by constraint (3)).

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 

 Time horizon is 24 hours divided into 1-hour intervals, with peak and 
off-peak energy tariffs used.

 The principle of neutrality is used and implemented to balance the 
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neutral search technique with 
micro GA.

Constraints: (1) Min/max reservoir capacity, 
(2) volume deficit in reservoirs at the end of 
the scheduling period, (3) upper limit on the 
total power consumed by a pump station (i.e. 
the limit on the number of pumps allowed to 
run simultaneously).
Decision variables: (1) On/off pump statuses.

(friction losses considered 
negligible compared to the 
geodetic height 
differences, unsteady 
state).
Optimisation method: 
Neutral search technique 
with micro GA (Coello 
and Pulido 2001).

evolutionary search through grouping. Based on objective function, 
similar individuals are grouped. Fitness functions are assigned to these 
groups, thus the individuals within a group have equal fitness. The aim 
is to decrease the selection pressure on the highly fit individuals 
introducing higher diversity.

 The constraints are merged with the objective function as such that the 
superiority of feasible solutions over infeasible ones is strictly ensured.

 Neutral search with micro GA is compared to two conventional GA 
approaches with constraints handled by penalty method and the 
method of Powell and Skolnick (1993). Neutral search shows good 
performance without the need to fine tune parameters through 
experimentation.

 Test networks: (1) Simplified model of a WDS of Sopron, Hungary.
75. Broad et al. (2010)
SO
Optimal operation of WDSs for a 
planning horizon of 25 years 
using ANN and GA.

Objective (1): Minimise (a) the energy costs 
for operating pumps (net present value (NPV) 
over 25 years), (b) capital costs of new 
chlorinators, (c) maintenance costs of existing 
and new chlorinators (NPV over 25 years), (d) 
costs of chlorine (NPV over 25 years), (e) 
penalty costs for violating min pressure, (f) 
penalty costs for violating residual chlorine 
concentrations. 
Constraints: (1) Min pressure at nodes, (2) 
min allowable residual chlorine concentration.
Decision variables: (1) Tank trigger levels to 
control pumps, (2) chlorine dosing rates.

Water quality: Chlorine.
Network analysis: ANN 
(process-driven, EPS) as a 
substitute for a hydraulic 
simulation model in order 
to provide savings in 
computational expenses; 
EPANET to train ANN.
Optimisation method: GA.

 Extension of the paper by Broad et al. (2005) catering for more 
complex WDSs inclusive of water quality considerations.

 The metamodelling approach taken is to create several ANNs, one for 
each output (pressure, energy consumed, chlorine residual, etc.), as 
opposed to a single ANN with several outputs. The approach taken is 
because “calibrating an ANN model for a single output generally 
improves predictive performance”.

 Time horizon is 700 hours (i.e. max water age in the test network), 
cyclic 24-hour demand patterns are used, a hydraulic time step is 1 
hour, water quality time step is 6 minutes.

 The results show that for the test network, some degree of 
skeletonisation of the ANN model is required to achieve suitably 
accurate metamodels.

 The best solution found represents a saving of 14% compared with the 
current operating regime with an estimated NPV of $1.56 million. 
ANN-GA run time was 1.4 hours compared to estimated EPANET-GA 
run time of over 1,000 days.

 Test networks: (1) WDS in Wallan (over 1700 nodes), Victoria, 
Australia

76. Gibbs et al. (2010a)
SO
Optimal operation of a real WDS 
including costs of pumping and 
disinfecting water using GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge; 
demand charge included by constraint (1)), (b) 
costs of dosing calcium hypochlorite tablets in 
reservoirs, (c) penalty costs for violating 
constraints.
Constraints: (1) Peak electricity demand 
bound, (2) min chlorine concentration, (3) min 

Water quality: Chlorine 
(first order decay).
Network analysis: 
EPANET (EPS).
Optimisation method: GA.

 Total chlorine is used as a surrogate for the chloramine, because only 
total chlorine measurements were available to calibrate the model.

 First the hydraulic model is calibrated, after which the chlorine decay 
model is added. The ‘triangular distribution’ model of calcium 
hypochlorite tablet dosing influence on the total chlorine concentration 
is developed.

 The daily demand is forecast assuming it will be the same as the 
previous days demand obtained from SCADA.
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water level in reservoirs, (4) volume deficit in 
reservoirs at the end of the simulation period, 
(5) min flow from one of the water storages to 
the treatment plant.
Decision variables: (1) Reservoir trigger levels 
to control pumps, (2) yes/no decisions for 
dosing calcium hypochlorite tablets in the 
reservoirs.

 Five different control periods over the day are used, these were derived 
from the electricity daily tariff.

 Four different scenarios are used in optimisation: with varying initial 
reservoir water levels, and with or without water quality constraints. 
For scenarios without water quality constraints, time horizon is 24 
hours. For scenarios with water quality constraints, time horizon is 57 
hours to observe the influence of the tablet dosing in the network.

 The solutions found can save up to 30% compared to the real operation 
of the system. Also it identified the allowing reservoir levels to be 
lower overnight, more pumping can be shifted to off-peak period.

 Test networks: (1) Woronora WDS, Sydney, Australia.
77. Gibbs et al. (2010b)
SO
Comparison of GA parameter 
setting methods in optimal 
operation of drinking WDSs.

Objective (1): Minimise (a) the mass of 
chlorine added to the system at six possible 
locations.
Constraints: (1) Min/max chlorine 
concentrations at nodes.
Decision variables: (1) Mass of chlorine 
injected at each dosing point.

Water quality: Chlorine.
Network analysis: 
EPANET (EPS).
Optimisation method: GA.

 The paper compares six GA calibration methods. Method 1: 
parameterless GA, method 2: convergence due to genetic drift, method 
3: GA with typically/commonly used parameter values, methods 4-6: 
all the previous methods in a self-adaptive framework. In methods 1-3, 
crossover and mutation are fixed, whereas in methods 4-6 they self-
adapt.

 Results: All methods consistently located better solutions than the 
typical GA parameter values, indicating the importance of identifying 
suitable values for a particular case. Furthermore, methods with fixed 
parameter values generally located better solutions than methods with 
self-adapting values.

 Test networks: (1) Cherry Hill-Brushy Plains portion of the South 
Central Connecticut Regional Water Authority network (incl. 34 
nodes), U.S. (data same as in (Boccelli et al. 1998)).

78. Kang and Lansey (2010)
SO
Optimal operation of drinking 
WDSs in real-time combining 
optimal settings of valves and 
chlorine booster injection doses to 
improve water quality using GA.

Objective (1): Minimise (a) the excess 
chlorine residuals at the consumer nodes, (b) 
penalties for violating constraints.
Objective (2): Minimise (a) the total mass of 
injected chlorine at sources/boosters, (b) as 
above.
Constraints: (1) Min/max chlorine 
concentrations at nodes, (2) min/max pressure 
head at nodes, (3) min/max tank water level, 
(4) volume deficit at tanks at the end of the 
decision period posed as limit on tank water 
level.
Decision variables: (1) Source water chlorine 
injection concentrations, (2) booster chlorine 
injection concentrations, (3) control valve 

Water quality: Chlorine.
Network analysis: 
EPANET (EPS, and steady 
state to predict system 
pressure).
Optimisation method: GA.

 Extension of the paper by Kang and Lansey (2009) including four 
operation cases. Case 1: Disinfectant supplied at a WTP with a 
constant injection rate. Case 2: Varied disinfectant injection rate. Case 
3: Three additional booster stations with varied injection rates. Case 4: 
Additionally considers valve operation.

 Time horizon is 24 hours which is acquired by four real-time runs 
performed every 6 hours. Nodal demands vary in space/time, hydraulic 
behaviour is non-periodic.

 Pump operation schedules are assumed to be given.
 A warm up simulation period is used for water quality analysis in 

order to obtain better initial concentrations.
 Because demands do not change rapidly, solutions obtained on 

previous days can be used as initial solutions on the next runs, which 
saves time and provides better solutions as opposed to starting with a 
fully random initial population.
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settings (% of valve closure).
Note: Two SO models, each including one 
objective.

 Results: Objectives (1) and (2) can be used equally as they are directly 
correlated. Using valves improves water quality by reducing 
disinfectant contact time and preventing slow moving water within the 
looped system. However, it can deteriorate water quality in tanks by 
increasing its residence times. A booster station is necessary for the 
nodes which are directly affected by water from tanks.

 Test networks: (1) Medium-sized WDS with 1 WTP, 5 pumps and 3 
booster stations (incl. 67 nodes).

79. Ostfeld et al. (2011)
SO
Optimal operation of multiquality 
WDSs including chemical water 
stability due to blended 
desalinated water using GA.

Objective (1): Minimise (a) the pumping 
costs, (b) water treatment costs.
Constraints: (1) Min pressure head at the 
consumer nodes, (2) min and max CCPP 
limits at the selected nodes, (3) max pH at the 
selected nodes, (4) tank volume deficit at the 
end of simulation.
Decision variables: (1) Scheduling of the 
pumping units (binary), (2) alkalinity level 
required at each of the desalination treatment 
plants (real).

Water quality: Total 
dissolved solids (TDS), 
alkalinity, temperature, 
acidity, calcium, CCPP, 
pH.
Network analysis: 
EPANET (EPS), 
STASOFT4 (Loewenthal 
et al. 1988).
Optimisation method: 
OptiGA (Salomons 2001).

 Aspect of chemical water instability, which can be a result of mixing 
desalinated water with surface and/or groundwater, is included in the 
optimal operation of WDSs. Chemical water stability is quantified 
through CCPP representing the precise potential of a solution to 
precipitate (or dissolve) CaCO3.

 Solution scheme links 3 components, GA (OptiGA), EPANET and 
STASOFT4. EPANET simulates TDS, alkalinity, temperature, acidity, 
calcium as conservative parameters, STASOFT4 simulates CCPP and 
pH. Time horizon is 24 hours.

 The intensive computational effort is highlighted, which needs to be 
addressed in further research.

 Test networks: (1) Two-loop network with 3 sources (incl. 6 demand 
nodes) (Ostfeld and Salomons 2004), (2) EPANET Example 3 (incl. 
94 nodes) (USEPA 2013).

80. Bagirov et al. (2012)
SO
Optimal pump operation with 
explicit and implicit pump 
scheduling using grid search with 
Hooke-Jeeves method.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for violating constraint (4).
Constraints: (1) Min/max water level at 
storage tanks, (2) volume deficit at storage 
tanks at the end of the scheduling period, (3) 
min/max pressure at nodes, (4) consecutive 
pump start/end run times, (5) limits on 
downstream pressure trigger values.
Decision variables: (1) Pump start/end run 
times, (2) downstream pressure trigger values 
to control pumps.

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: Grid 
search with Hooke-Jeeves 
method.

 The optimisation problem is formulated to combine explicit and 
implicit pump scheduling into one optimisation model. Explicit pump 
schedules are represented by the start/end run times of pumps, while 
implicit pump schedules are represented by downstream pressure 
trigger values.

 For explicit pump scheduling, the number of pump switches is limited 
a priori. For implicit pump scheduling, the number of pump switches, 
which is dependent on a difference between downstream pressure 
trigger values, can be defined by a user.

 Time horizon is 24 hours, two energy tariffs are used.
 Test networks: (1) Small water distribution network (incl. 13 nodes) 

(Van Zyl et al. 2004).
81. Bene and Hos (2012)
SO
Optimal pump operation to fill a 
reservoir using series of the local 
optima (SLO) technique.

Objective (1): Minimise (a) the pump energy 
costs to fill a reservoir.
Constraints: Not specified.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on, for each time 
interval).

Water quality: N/A.
Network analysis: 
Simplified hydraulics.
Optimisation method: SLO 
technique.

 A problem of filling a reservoir using a variable speed pump is 
considered. Artificial but qualitatively proper performance curves are 
used. The time to fill up the reservoir is unbounded. Two scenarios are 
analysed: infinitely large reservoir and finite reservoir.

 The method developed is based on sequentially updating the operating 
point corresponding to instantaneous minimal energy consumption, 
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which is calculated analytically.
 SLO technique is compared to the multipurpose global optimisation 

solver SBB (GAMS 2014). Results show that SLO technique gives 
similar results with significantly less computational effort.

 Test networks: (1) System with a source, a pump, a pipe network 
(representing losses), an upper reservoir and a node in which the 
consumption is concentrated.

82. Giustolisi et al. (2012)
MO
Optimal operation of WDSs 
including the non-revenue water 
costs due to leakage and pump 
operating costs using GA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) cost of non-revenue water (water losses) 
due to leakage.
Objective (2): Minimise (a) the constraint (1), 
(b) the constraint (2), (c) the constraint (3).
Constraints: (1) Min pressure for sufficient 
service expressed as the number of times in 
which it is not satisfied, (2) tank volume 
deficit at the end of simulation, (3) min tank 
levels as the number of times in which it is not 
satisfied, (4) max tank levels, (5) global mass 
balance in each tank during an operating 
cycle.
Decision variables: (1) On/off statuses 
(binary) of pumps (and gate valves).
Note: One MO model including both 
objectives.

Water quality: N/A.
Network analysis: 
Generalised steady-state 
model, where EPS is 
performed as a sequence of 
steady state simulation 
runs.
Optimisation method: 
WDNetXL (Giustolisi et 
al. 2011) using optimised 
multi-objective genetic 
algorithm (OPTIMOGA) 
(Laucelli and Giustolisi 
2011).

 Demand-driven analysis is used to calculate pressures, pressure-driven 
analysis is used to calculate water losses.

 Time horizon is 24 hours divided into 1-hour intervals, with a varied 
energy tariff.

 During optimisation process, if three constraints on min and max tank 
levels and min nodal pressure are not satisfied, the computation of EPS 
is stopped to reduce the computational burden.

 Three scenarios for water leakage are considered, where water losses 
are 10%, 20% and 40% of the daily volume of customer demands. 
Also, the case of only pumping cost is compared to the case of 
pumping and water loss cost.

 It was found out that pump energy costs and water losses due to 
leakage are conflicting objectives. Minimization of just pump energy 
costs moves the pumping to the night time when the pressures in the 
system are higher and thus more leakage occurs. When cost of non-
revenue water is introduced, more pumping occurs during the day time 
and leakage reduces.

 It was found that non-revenue water cost dominates the energy cost of 
pumping water, although the unit volume cost of water is assumed 
rather low. Therefore, it could be a better practice to pump during the 
day time in order to control leaks.

 Test networks: (1) Network with 1 reservoir, 3 pumps, 1 tank (incl. 30 
nodes).

83. Gleixner et al. (2012)
SO
Optimal pump operation using 
MINLP.

Objective (1): Minimise (a) the cost of 
purchasing water at the sources, (b) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max flows through 
pumps, (2) max pump head, (3) min/max 
flows through valves, (4) min/max flows 
through pipes, (5) min/max pressure at 
junctions, (6) pressure at sources is fixed.
Decision variables: (1) On/off pump statuses 
(binary), (2) flow direction through valves 

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(steady state).
Optimisation method: 
SCIP solver (Achterberg 
2009) using branch and 
bound method for general 
MINLP problems.

 The aim is to find epsilon-globally optimal solution.
 Problem specific presolving steps are used to reduce size and difficulty 

of the model. These steps include merging subsequent pipes, 
contracting pipe-valve sequences, etc.

 A distinction is made between so called real and imaginary flows. 
Head levels at nodes without water (caused by a closed valve or 
inactive pump) and flow induced by these heads according to Darcy-
Weisbach equation are said to be imaginary as opposed to real. 
Therefore, Darcy-Weisbach equation is enforced only between real 
nodes.
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(binary), (3) indicator whether node is real 
(binary), (4) flows in pipes (continuous).

 Two scenarios are tested: the first with all tanks half full, the second 
with certain tanks set to their minimum levels.

 It is demonstrated that defined optimisation problems can be solved to 
global optimality in short running times in order of seconds.

 Test networks: (1) Small network with 1 reservoir, 4 tanks, 12 pumps 
and 6 valves (incl. 20 nodes), (2) large network with 15 reservoirs, 11 
tanks, 55 pumps and 9 valves (incl. 62 nodes).

84. Selek et al. (2012)
SO
Optimal pump operation using 
micro GA with constraint 
handling using neutrality.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge; 
demand charge included by constraint (6)).
Constraints: (1) Min/max reservoir volumes, 
(2) volume deficit in reservoirs at the end of 
the scheduling period, (3) limit on the number 
of pump switches for well pumps (variable 
speed pumps), (4) max pump capacity, (5) 
min/max water volume delivered from wells, 
(6) upper energy limit.
Decision variables: (1) Pump flows (integer 
for fixed speed pumps, continuous for variable 
speed pumps).

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: 
Micro GA with constraint 
handling using neutrality.

 Extension of the paper by Bene et al. (2010) including detailed 
description of constraint handling using neutrality.

 Neutrality principle is that individuals in the same partition (rather 
than each individual) are assigned the same fitness value, so they do 
not dominate each other, thus have equal probability to propagate 
through generations. The advantage of neutrality is to achieve a good 
tradeoff between exploitation and exploration.

 Time horizon is 24 hours divided into 1-hour intervals. Initial flow 
rates are determined by operators and serve as input for optimization 
algorithm.

 The methodology is compared to constraint handing using penalty 
approach, Powell’s method (Powell and Skolnick 1993) and Deb’s 
method (Deb 2000). All are incorporated into a micro GA.

 The results indicate that in terms of pump operating costs there is 
marginal improvement over the other methods, however there is a 
significant improvement of 37.6% in the speed.

 Test networks: (1) WDS of Sopron, Hungary.
85. Arai et al. (2013)
SO
Optimal operation of drinking 
WDSs using ISM and 
multipurpose fuzzy LP.

Objective (1): Minimise total energy 
consumption for (a) water treatment at 
treatment plants, (b) supplying water from 
treatment plants, (c) water distribution from 
supply stations.
Objective (2): Minimise (a) water quality 
distance.
Constraints: (1) Max treatment capacity of 
WTPs, (2) the total water volume flowing into 
a reservoir must not exceed its volume, (3) the 
total water volume flowing into a distribution 
area must satisfy its demand.
Decision variables: (1) Water volumes.
Note: One SO model combining both 
objectives.

Water quality: Total 
organic carbon (TOC).
Network analysis: ISM 
(Warfield 1982) as a 
substitute for a hydraulic 
simulation model. 
Calculates (yearly) 
volumes.
Optimisation method: LP, 
multipurpose fuzzy LP 
(Zimmermann 1978).

 Decision variables represents water volumes to be supplied via WTPs 
and supply stations.

 Two optimisation requirements were adopted to account for water 
quality; the amount of organic substances contained in water and the 
distance travelled by water containing TOC should be minimal.

 First, hierarchisation of the WDS is performed using ISM. Second, 
each objective is minimised separately using LP. Third, multipurpose 
fuzzy LP is used, where linear membership functions are applied to 
normalise and combine both objectives. By introducing a 
supplementary variable, multipurpose fuzzy LP problem is converted 
into a standard LP problem.

 Tradeoff between total energy consumption and water quality is 
obtained. It is commented that results are affected by the shape of 
membership function.

 Test networks: (1) WDS including 11 WTPs, 9 supply stations and 
10 water distribution districts.
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86. Bagirov et al. (2013)
SO
Optimal pump operation with 
start/end run times of pumps as 
decision variables using grid 
search with Hooke-Jeeves 
method.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge). 
(b) penalty costs for violating constraint (4).
Constraints: (1) Min/max water level at 
storage tanks, (2) volume deficit at storage 
tanks at the end of the scheduling period, (3) 
min/max pressure at nodes, (4) consecutive 
pump start/end run times.
Decision variables: (1) Pump start/end run 
times, (2) binary indicator showing whether 
the pump is on or off at the initial time 
interval.

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: Grid 
search with Hooke-Jeeves 
method.

 The proposed methodology significantly reduces the number of 
decision variables in the pump scheduling optimisation problem.

 Time horizon is 24 hours, two energy tariffs are used.
 The number of pump switches is limited a priori.
 First, a set of pump schedules is generated using grid. Second, 

hydraulic simulator EPANET is used to check the feasibility of the 
schedules. Third, the modification of Hooke-Jeeves method is applied 
to improve the feasible schedules. The algorithm iterates between 
EPANET and Hooke-Jeeves method. Last, the local solutions 
identified are ranked, and the solution with the lowest objective 
function value is selected.

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 
2013), (2) Small water distribution network (incl. 13 nodes) (Van Zyl 
et al. 2004).

87. Bene et al. (2013)
SO
Optimal pump operation using 
approximate dynamic 
programming (ADP).

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the number of 
pump switches.
Constraints: (1) Max power output of power 
supplies, (2) min/max flow from wells, (3) 
limit on the number of operating points of 
well pumps, (4) min/max limits for the 
exploited water for wells, (5) min/max 
reservoir volumes.
Decision variables: (1) Pump flows (discrete 
for fixed speed pumps, continuous for variable 
speed pumps).
Note: Two SO models, each including one 
objective.

Water quality: N/A.
Network analysis: ‘Flow 
only’ model (EPS) 
(Cembrano et al. 2000).
Optimisation method: 
ADP.

 A modified approach to DP is used. The method is based on two key 
ideas. First, the network is split into smaller parts in order to reduce 
the state and action space of the solvable submodels compared to the 
original one. Second, the state space of the WDS is further reduced to 
the key reservoirs.

 It is noted that due to the hilly terrain of the test network, the water 
level variations in the reservoirs and friction losses are negligible 
compared to geodetic heights, so the operating point of the pumps can 
be determined in advance, hence there is no need for hydraulic 
simulation during the optimisation process.

 Time horizon is 24 hours divided into 1-hour intervals.
 Nine test cases with different initial water volumes of the reservoirs 

are defined.
 The results are compared with GA and 6 other general purpose 

deterministic solvers available from (NEOS 2014). The benefits and 
drawbacks of these methods are highlighted.

 Test networks: (1) WDS of Sopron, Hungary.
88. Fanlin et al. (2013)
SO
Optimal location and injection 
rates of booster disinfectant 
stations for drinking WDSs using 
matrix based algorithm.

Objective (1): Maximise (a) the coverage of 
the booster disinfection stations to the target 
nodes, which have a disinfection deficiency 
problem (so called ‘target cases’).
Objective (2): Minimise (a) the disinfection 
injection rate.
Constraints: (1) Positive injection rate, (2) 
lower/upper concentration limits at nodes.
Decision variables: (1) Number of booster 

Water quality: Chlorine 
(first order decay).
Network analysis: 
EPANET (EPS) in the set 
up phase, linear 
superposition in the 
solution phase.
Optimisation method: 
Matrix based algorithm. 

 The aim is to improve the current disinfection state of the network.
 The solution procedure consists of two phases as follows. (1) Set up 

phase: EPANET is used to determine ‘target cases’. The candidate set 
of booster stations is, instead of subjectively selected, narrowed down 
to the disinfection weak points with the aid of the hydraulic calculation 
by particle backtracking algorithm (PBA) (Shang et al. 2002). (2) 
Solution phase (approached as a two-step single optimisation 
problem): Optimisation is performed based on matrix calculations (so 
called ‘coverage matrix’) using the principle of linear superposition. If 
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disinfection stations, (2) locations of booster 
disinfection stations, (3) injection rate (flow 
paced).
Note: One SO model as a two-step single 
optimisation problem.

more than one solution with maximum coverage is obtained, 
minimisation of the injection rates is performed.

 It is assumed that the number of booster stations is known before the 
optimisation of locations and injection rates. After each optimisation, 
the number is increased by one and in the end a tradeoff is observed 
between the number of booster stations and improvement of the water 
quality in the network.

 Hydraulic cycle is 24 hours divided into 1-hour monitoring intervals.
 Results show that adding booster disinfection stations to 0.1% of 

nodes can satisfy the chlorine residual at about 97.5% of total nodes.
 Test networks: (1) WDS in Beijing (incl. 3339 nodes), China.

89. Giacomello et al. (2013)
SO
Optimal pump operation in real-
time using a hybrid method where 
LP is combined with a greedy 
algorithm (LPG).

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min pressure at nodes, (2) 
min/max tank water levels, (3) recovery of 
water levels in tanks at the end of the 
scheduling period, (4) constant reservoir 
levels.
Decision variables: LP: (1) Hourly flow rates 
in all network pipes and pumps, (2) heads at 
all network nodes; Greedy algorithm: (1) 
hourly pump statuses for the pumps which are 
still on (i.e. open) after the execution of the LP 
method.

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
Hybrid LPG method.

 Time horizon is 24 hours divided into 1-hour intervals.
 Two stage optimisation method is used. Firstly, the optimisation model 

is linearised and LP applied to find a near optimal solution. Secondly, 
all the linearisation is removed and the greedy local search algorithm 
coupled with EPANET explores the vicinity of identified solutions to 
improve them. This allows obtaining the solutions in a 
computationally efficient way.

 For the Anytown network, the best solution found is compared to the 
previously obtained solution using GA (Vamvakeridou-Lyroudia et al. 
2005). The optimal pumping costs are slightly lower than in the 
previous study, with computation time of 4 seconds.

 For the Richmond network, GA was implemented for a comparison. 
The best solution found is 1.6% more expensive than the best solution 
by GA, however, it is found only in 23 seconds compared to 90 
minutes by GA.

 Test networks: (1) Anytown network (incl. 19 nodes) (Walski et al. 
1987), (2) Richmond WDS (incl. 41 nodes), UK.

90. Kougias and Theodossiou 
(2013)
MO
Optimal pump operation 
considering both energy and 
demand charges using HSA.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the quantity of 
pumped water.
Objective (3): Minimise (a) the electric energy 
peak consumption (demand charge).
Objective (4): Minimise (a) the number of 
pump switches
Constraints: (1) Min/max water levels in 
storage tanks, (2) volume deficit at storage 
tanks at the end of the scheduling period (final 
discharges equal to ±10% of the daily 

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: MO-
HSA and Poly-HSA.

 Time horizon is 24 hours divided into 1-hour intervals.
 Modifications to a single objective HSA are made to cater for a MO 

case, which results in MO-HSA and the development of Poly-HSA. 
The algorithms are evaluated using standard multi-objective test 
functions (Zitzler et al. 2000).

 The performance of MO-HSA and Poly-HSA is evaluated using three 
performance metrics: C-metric, diversity metric - Δ and the 
hypervolume indicator.

 Two penalty functions are used to handle constraints. The first penalty 
adds a constant value to the objective function for the solutions which 
violate tank water levels. The second penalty ensures that the solutions 
cover the ±10% range of the daily demand. Thus, the second penalty 
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demand).
Decision variables: (1) Pump statuses.
Note: Two MO models, the first including 
objectives (1), (2), (3), the second objectives 
(1), (2), (4).

adds an extra cost to the objective function, analogous to the distance 
from the defined range.

 Test networks: (1) Operational pumping field, Paraguay.

91. Kurek and Ostfeld (2013)
MO
Optimal operation of drinking 
WDSs including costs of 
pumping, water quality 
considerations and costs of tanks 
using SPEA2.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the evaluation 
function of disinfectant concentrations at 
monitoring nodes (including tanks).
Objective (3): Minimise (a) the water age for 
all nonzero demand nodes.
Objective (4): Minimise (a) the costs of tanks.
Constraints: (1) Pressure at nodes, (2) tank 
volume surplus/deficit at the end of 
simulation, (3) storage reliability constraint to 
guarantee a sufficient amount of stored water 
at any time.
Decision variables: (1) Pump speeds (real), (2) 
disinfectant concentrations at treatment plants 
(real), (3) tank diameters (integer).
Note: Two MO models, the first including 
objectives (1), (2), (4), the second objectives 
(1), (3), (4).

Water quality: Water age 
and disinfectant (i.e. 
chlorine).
Network analysis: 
EPANET (EPS).
Optimisation method: 
SPEA2 (Zitzler et al. 
2001).

 Extension of the paper by Kurek and Ostfeld (2014) including 
additional objectives such as water age and tank costs.

 Variable speed pumps are considered.
 Two optimisation problems are solved, each includes a different water 

quality measure, the first chlorine concentrations and the second water 
age.

 The costs of tanks vary with the location and diameter.
 Time horizon is 24 hours divided into 1-hour intervals.
 ‘Balanced’ solution is selected according to the utopian mechanism 

(Miettinen 1999).
 It was found out that operation of the tanks is significantly different for 

two optimisation problems. In the first problem with chlorine 
concentrations, water levels in tanks nicely fluctuate. Whereas in the 
second problem with water age, water levels in tanks fluctuate much 
less or are almost constant. This operation for the second problem is 
caused by exclusion of tanks from the objective (3) where only 
nonzero demand nodes are considered.

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 
2013).

92. Price and Ostfeld (2013a)
SO
Optimal pump operation with 
linearised Hazen-Williams (H-W) 
head-loss equation using LP.

Objective (1): Minimise (a) the annual pump 
operation cost, (b) flow change penalty.
Constraints: (1) Tank volume water balance 
closure over the optimisation period, (2) 
min/max tank water levels, (3) min/max 
pressure heads at nodes, (4) max total head at 
pumping stations.
Decision variables: (1) Pipe flow rates, (2) 
total pump heads.

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
COIN-OR (COIN-OR 
2014) using branch and cut 
LP method.

 The paper deals with the linearization of H-W equation for subsequent 
use in LP optimisation model.

 Time horizon is 1 year or 1 week.
 The methodology is based on a water balance model with no hydraulic 

equations (no head-loss equations). The model is extended to include 
the H-W equation, which is partitioned into two sub-equations. The 
first sub-equation represents the constant part of the H-W equation 
dependent only on pipe geometry. The second sub-equation represents 
the linearisation of the nonlinear flow Q1.852 as a linear equation, 
subject to linearisation coefficients. These two sub-equations are then 
combined into one linear H-W head-loss equation.

 The linearisation algorithm is developed. At each iteration of the 
optimisation algorithm, linearization coefficients are updated. The 
advantage of the proposed methodology is short solution times.

 Test networks: (1) Basic WDS with 1 pump (incl. 2 nodes), (2) 
complex WDS with 3 pressure zones (incl. 15 nodes).
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93. Price and Ostfeld (2013b)
SO
Optimal pump operation with 
linearised H-W head-loss and 
leakage equations using LP.

Objective (1): Minimise (a) the annual pump 
operation cost, (b) source cost penalty, (c) 
flow change penalty.
Constraints: (1) Max pump station flow rate, 
(2) water leakage equation, (3) flow change 
constraint, (4) min/max water tank volumes, 
(5) min/max heads at nodes, (6) max total 
head at pumping stations.
Decision variables: (1) Pipe flow rates, (2) 
leakage at nodes, (3) total pump heads.

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
GAMS/CLP (COIN-OR 
2014).

 Improved version of the iterative linearization method (Price and 
Ostfeld 2013a) is proposed.

 H-W head-loss equation, water leakage equation and pump energy 
consumption equation are linearised. Water leakage is pressure-
dependent.

 Time horizon is 1 week divided into 1-hour intervals.
 Fixed speed pumps are not handled because their inclusion would 

transform the original smooth NLP problem into a discrete mixed 
integer programming (MIP) problem.

 The flow change penalty is introduced to all iteration steps to prevent 
solution oscillation, which occurs between two similar solutions in the 
final iteration steps and prevents convergence. It was found out that 
flow change penalty helps to reach the optimal solution in less 
iteration steps.

 Several scenarios (cases) are analysed, constraints are increasingly 
implemented into scenarios.

 Test networks: (1) Complex WDS with 3 pressure zones (incl. 15 
nodes).

94. Ghaddar et al. (2014)
SO
Optimal pump operation using 
Lagrangian decomposition with 
improved limited discrepancy 
search (ILDS) algorithm.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Upper bound for pipe flows, 
(2) pump must be on for the water to flow in 
the corresponding pipe, (3) min/max tank 
water levels, (4) nonnegativity for pipe flows, 
(5) min length of time for a pump to be on, (6) 
min length of time for a pump to be off, (7) 
max number of pump switches, (8) no deficit 
in tanks at the end of simulation period.
Decision variables: (1) Pipe flows, (2) pipe 
headlosses, (3) node pressures, (4) pump 
statuses (binary, 0 = pump off, 1 = pump on).

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
Lagrangian decomposition 
combined with ILDS.

 Lagrangian decomposition, which is a relaxation, breaks the original 
problem into smaller subproblems. Due to the relaxation of the 
original problem, the solutions of the subproblems may not be feasible 
for the original problem. Therefore, a heuristic ILDS is used to find 
feasible solutions. ILDS provides an upper bound on the optimal 
objective function value, while the Lagrangian relaxation provides a 
lower bound, so the proposed approach provides solutions of 
guaranteed quality.

 The approach is compared with the MILP relaxation of the original 
MINLP problem, which is solved by CPLEX.

 Time horizon is 24 hours, and the decisions to turn a pump on or off 
are made at 30 minute intervals.

 Two electricity pricing schemes are used. First, fixed day/night 
scheme; second, dynamic scheme with prices changing every 
30 minutes.

 The results show that the ILDS can find better solutions than CPLEX 
in significantly less time. Optimised pump schedules typically lead to 
decrease in tank water levels.

 Impact of electricity pricing schemes on pump operating costs is 
evaluated. Dynamic pricing results in up to 34% of cost reduction.

 Test networks: (1) Small network with 1 reservoir, 2 pumps, 2 tanks 
(incl. 1 node), (2) Poormond network (incl. 47 nodes) adapted from 
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Richmond network.
95. Goryashko and Nemirovski 
(2014)
SO
Optimal pump operation with 
demand uncertainty using LP.

Objective (1): Minimise (a) the pump 
operating costs (including two components: 
energy consumption charge and the price of 
water).
Constraints: (1) Bounds on tank levels, (2) 
bound on pump capacity, (3) bound on source 
capacity.
Decision variables: (1) The amount of water 
pumped into the system during time interval.

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation/ 
EPANET (EPS).
Optimisation method: 
MOSEK software 
(MOSEK 2014) using LP.

 The original problem of minimization of pumping cost is simplified to 
a LP problem, in which the demands are treated as uncertain. To cater 
for demand uncertainty, the robust counterpart methodology is 
employed, which involves obtaining the ‘worst-case’ cost over all 
possible data from the ‘uncertainty set’, ensuring that all the 
constraints are satisfied for all realisations of the demands. Using the 
robust counterpart methodology, the uncertain LP model is converted 
to a linearly adjustable robust counterpart. Results obtained are 
referred to as linear robust optimal (LRO) policy.

 Time horizon is 24 hours divided into 1-hour intervals.
 The obtained LRO policy with the uncertainty level set to 20% is 

tested in EPANET to ensure appropriate hydraulic behaviour. For 
testing purposes, the demands were perturbed in EPANET. The results 
show that the warnings in EPANET (negative pressure etc.) start 
appearing when the perturbations become as large as 50%.

 Test networks: (1) Anytown network (incl. 19 nodes) (Walski et al. 
1987) with modifications.

96. Ibarra and Arnal (2014)
SO
Optimal pump operation using 
parallel programming techniques 
and MIP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Min/max operational tank 
volumes, (2) the number of start/stop events of 
the pumps.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on during a time 
interval), (2) special binary variables Ai and Pi 
to model start/stop events of the pumps (they 
are used to reduce the number of start/stop 
events).

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation, 
simplified hydraulic 
equations (unsteady state).
Optimisation method: 
COIN-OR libraries 
(COIN-OR 2014) using 
branch and bound method 
and demand prediction.

 The optimisation problem is formulated as a MIP problem.
 Time horizon is 24 hours.
 Near real-time optimal pump scheduling is proposed based on demand 

forecast. Demand forecast is determined every hour for the next 24 
hours and the next 7 days using seasonal autoregressive integrated 
moving average (SARIMA) (Makridakis et al. 2008) models from 
statistical time series theory.

 Parallel programming is implemented on both shared and distributed 
memory multiprocessors. Stochastic scenario tree evaluation and 
multisite problems (multiple networks controlled from a single control 
centre) are solved.

 Test networks: (1) WDS of Granada, Spain.
97. Hashemi et al. (2014)
SO
Optimal pump operation 
considering variable speed pumps 
using ACO.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Volume deficit in tanks at the 
end of the simulation period.
Decision variables: (1) Pump speeds for each 
interval.

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: Ant 
system iteration best (ASib) 
algorithm.

 Time horizon is 24 hours divided into 1-hour intervals.
 Sensitivity analysis to find the best performing values of ASib 

stochastic parameters is performed.
 For the Richmond network, the results with single speed pumps are 

compared to the results with variable speed pumps. Cost savings of 
about 10% are obtained for the network with variable speed pumps.

 For the Anytown network, the size of search space is reduced using 
two approaches, ‘Replacing reservoir’ (RR) and ‘In-station 
scheduling’ (ISS). RR involves replacing one of the pumping stations 
by the reservoir and optimising head and flow supplied by that 
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reservoir. Decision variable is the water level. ISS involves 
transforming obtained heads and flows to a pump schedule. Search 
space is reduced more than 1038 times.

 Test networks: (1) Simplified Richmond WDS (incl. 13 nodes) (Van 
Zyl et al. 2004), (2) optimised design of the Anytown network (incl. 
22 nodes) (Murphy et al. 1994).

98. Kurek and Ostfeld (2014)
MO
Optimal operation of drinking 
WDSs including pumping cost 
and water quality objectives using 
SPEA2.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Minimise (a) the evaluation 
function of disinfectant concentrations at 
monitoring nodes.
Constraints: (1) Pressure at nodes, (2) tank 
volume surplus/deficit at the end of 
simulation, (3) storage reliability constraint to 
guarantee a sufficient amount of stored water 
at any time.
Decision variables: (1) Pump speeds (real), (2) 
disinfectant concentrations at treatment plants 
(real).
Note: One MO model including both 
objectives.

Water quality: Disinfectant 
(i.e. chlorine).
Network analysis: 
EPANET (EPS).
Optimisation method: 
SPEA2 (Zitzler et al. 
2001).

 Variable speed pumps are considered.
 Time horizon is 72 hours divided into 1-hour intervals. Only the last 

24 hours are used to evaluate the values of objective functions and 
constraints in order to minimise the effect of initial conditions.

 Tradeoffs between energy consumed by pumps and water quality are 
obtained: more energy consumed by pumps results in better water 
quality, conversely, limiting the amount of energy consumed by 
pumps results in deterioration of water quality.

 Sensitivity analysis is performed to test the change in energy tariffs to 
the solution, indicating the higher use of pumps during cheap tariff.

 Introduction of the storage reliability constraint (3) caused the 
algorithm to reduce the volume of water stored. Sensitivity analysis is 
performed to test the change in volume of water stored to the solution. 
The increase in volume of water stored cased the increase in energy 
consumed by pumps and deterioration of water quality.

 Test networks: (1) Anytown network (incl. 16 nodes) (Walski et al. 
1987), (2) EPANET Example 3 (incl. 94 nodes) (USEPA 2013).

99. Mala-Jetmarova et al. (2014)
MO
Optimal operation of regional 
multiquality WDSs including 
pumping cost and water quality 
objectives using NSGA-II.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for violating constraints.
Objective (2): Minimise (a) the deviations of 
the actual constituent concentrations from the 
required values, (b) as above.
Constraints: (1) Min pressure at customer 
demand nodes, (2) min/max water levels at 
storage tanks, (3) volume deficit in storage 
tanks at the end of the scheduling period.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on during a time 
interval).
Note: One MO model including both 
objectives.

Water quality: 
Conservative parameter.
Network analysis: 
EPANET (EPS).
Optimisation method: 
NSGA-II.

 Tradeoffs between water quality and pumping costs are explored using 
14 scenarios, which reflect different water quality conditions in source 
reservoirs. Time variability for source water quality as well as 
customer requirements is introduced.

 Time horizon is 24 hours divided into 1-hour intervals.
 It was discovered that for the majority of the scenarios, there is a 

tradeoff with a competing nature between the objectives. It was also 
discovered that the problem can be reduced, in certain instances, to a 
single-objective problem. This outcome is dependent upon the water 
quality configuration of the system (i.e. how source water qualities 
relate to customer water quality requirements), and upon system 
operational flexibility.

 Some particular conclusions are drawn for both a WDS with multiple 
water sources and a WDS with a single water source, which suggest 
how changes in source water qualities or customer water quality 
requirements may impact on system operation.

 Test networks: (1) Network with 3 sources (incl. 9 nodes) (Ostfeld and 
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Salomons 2004; Ostfeld et al. 2011), (2) Anytown network (incl. 19 
nodes) (Walski et al. 1987).

100. Price and Ostfeld (2014)
SO
Optimal pump operation 
including leakage using LP.

Objective (1): Minimise (a) the annual pump 
operation cost, (b) sum of the penalty variable 
given by the discrete pump operation 
constraint (3), (c) flow change penalty.
Constraints: (1) Max pump station flow rate, 
(2) water leakage equation, (3) discrete pump 
operation constraint, (4) flow change 
constraint, (5) min/max water tank volumes, 
(6) min/max heads at nodes, (7) max total 
head at pumping stations.
Decision variables: (1) Pipe flow rates, (2) 
leakage at nodes, (3) total pump heads.

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state).
Optimisation method: 
GAMS/CLP (COIN-OR 
2014).

 Extension of the papers by Price and Ostfeld (2013a) and Price and 
Ostfeld (2013b) including a discrete pump operation algorithm which 
encourages continuous pump operation over time without frequent 
pump switching.

 Time horizon is 1 month, 1 week or 1 day divided into 1-hour 
intervals.

 Iterative LP is used, which iteratively introduces a discrete pump 
operation constraint into the optimisation model encouraging the pump 
to work for the whole time interval. The iterative process calculates an 
index, which is high for the pumping intervals with high flow rates and 
low energy consumption. The constraint is introduced to the pumping 
interval with the highest index. The model is reevaluated at each 
iteration, with constraints being removed from intervals which failed 
the constraint (due to water balance or water head constraints) and 
added to new intervals with a high index. The process stops when all 
the time intervals have been covered.

 For a small test network, the methodology is compared to a complete 
enumeration, with the optimal cost being within 0.2% of the global 
minimum. For more complex networks, several scenarios are analysed 
including changes in tank volumes, nodal head constraints, presence 
/absence of leakage etc.

 Test networks: (1) Basic WDS with 1 pump (incl. 2 nodes), (2) 
complex WDS with 3 pressure zones (incl. 15 nodes), similar to Price 
and Ostfeld (2013b), (3) large network with 5 pressure zones (incl. 75 
nodes).

101. Reca et al. (2014)
SO
Optimal pump operation of 
irrigation systems using LP.

Objective (1): Minimise (a) the annual pump 
operating costs (energy consumption charge).
Constraints: (1) Max pumping capacity of 
each pumping system for each period, (2) 
min/max storage capacity, (3) restriction on a 
total pumped volume to prevent volume 
deficit at storages in the final period, (4) 
nonnegativity constraints on variables.
Decision variables: (1) Water volumes 
pumped for each pumping system in each 
price discrimination period. 

Water quality: N/A.
Network analysis: Explicit 
mathematical formulation 
(unsteady state), with the 
operating points confirmed 
by EPANET.
Optimisation method: 
Revised simplex method.

 The optimisation problem is formulated as a LP problem.
 The model is aimed to help decision makers identify which energy 

tariff structures are more economical and determine optimal pumping 
policies. Three electricity tariff structures which differ in the number 
of tariff periods, prices in each period and their daily and annual 
distribution are examined.

 Test network consists of 15 submerged pumps which lift water from 3 
groups of wells, and 3 booster stations which deliver water to the 
network. The system is simplified as follows. Each group of wells is 
replaced by one equivalent pump, the joint operation of every well 
group and its associated booster station is modelled as two pumping 
systems in series, hourly demands are estimated from daily demands 
using a daily mean demand pattern.
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 Two operating scenarios are compared: pump stations operating 
simultaneously or independently. Independent operation proves to be 
more energy efficient.

 Test networks: (1) Irrigation WDS, Almeria, Spain.
102. Wu et al. (2014a)
SO
Optimal operation of parallel 
pumps to achieve their best 
operating point using GA.

Objective (1): Minimise (a) pump power.
Constraints: (1) Min/max rotational speed 
ratios, (2) min/max flow rates for each pump, 
(3) head of each pump greater than demanded 
head.
Decision variables: (1) Pump rotational speed, 
(2) valve positions.

Water quality: N/A.
Network analysis: N/A.
Optimisation method: GA.

 The aim is for pumps to operate as close as possible to the designed 
conditions at their maximum efficiency.

 Results indicate that control valves help improve efficiency and 
reliability of a single pump. However, valve throttling losses cause a 
significant decline in efficiency in the system of parallel pumps.

 Test networks: (1) Two identical parallel pumps, (2) multiple parallel 
pumps with different characteristics.

103. Wu et al. (2014b)
SO
Optimal disinfectant dosing rate 
in chloraminated drinking WDSs 
using ANN and GA.

Objective (1): Minimise (a) maximum 
absolute relative error for the total chlorine 
and free ammonia levels.
Constraints: (1) Lower/upper bounds of 
ammonia dosing rate, (2) the target value for 
total chlorine, (3) the target value for free 
ammonia.
Decision variables: (1) Ammonia dosing rate 
at the source.

Water quality: Chloramine, 
chlorine, ammonia.
Network analysis: ANN 
(data-driven, EPS) to 
forecast both total chlorine 
and free ammonia levels.
Optimisation method: GA.

 Objective is to control total chlorine and free ammonia levels to be 
close to their desired levels.

 Water in the test network is used for both agricultural and domestic 
purposes.

 There is no process-based hydraulic/water quality model for the test 
network. Therefore, a data-driven ANN model is developed to forecast 
both total chlorine and free ammonia levels. Data for the development 
of the ANN model was gathered from the SCADA system and was 
converted into hourly average values.

 Time horizon is 5 days (120 hours).
 It is demonstrated that model predictive control system for a 

chloraminated WDS can potentially provide additional information to 
water quality operators on dosing rate control.

 Test networks: (1) Goldfield and agricultural water system, Perth, 
Australia.

104. Kim et al. (2015)
SO
Optimal pump operation using 
DP.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Constraints: (1) Max daily pumping capacity, 
(2) min/max limit for reservoir storage 
capacity, (3) min/max limit for pipe 
conveyance from pump station to reservoir.
Decision variables: (1) Pump schedules.

Water quality: N/A.
Network analysis: Not 
specified (EPS).
Optimisation method: 
CSUDP program (Labadie 
1999) using DP.

 Time horizon is 24 hours. Electricity tariff varies with the time of the 
day and the seasons.

 Four pump operating scenarios are tested. These include the inclusion 
of standby pumps and different demands, demand patterns and 
electricity tariff.

 Results demonstrate that operating standby pumps together with 
existing pumps is more effective due to taking a full advantage of low 
electricity tariff. Optimised pump schedules represent cost savings of 
6.3% compared to the current mode of operation, and cost savings of 
19.2% while using standby pumps.

 Test networks: (1) YangJu, Korea.
105. Mala-Jetmarova et al. (2015)
MO
Optimal operation of regional 

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge), 
(b) penalty costs for violating constraints.

Water quality: Turbidity, 
salinity.
Network analysis: 

 Optimal operation is analysed using 6 network scenarios, which 
represent different water quality conditions in 2 source reservoirs in terms 
of turbidity and salinity levels. These water quality conditions as well as 
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multiquality WDSs including 
pumping cost and two water 
quality objectives using NSGA-II.

Objective (2): Minimise (a) the turbidity 
deviations from the allowed values, (b) as 
above.
Objective (3): Minimise (a) the salinity 
deviations from the allowed values, (b) as 
above.
Constraints: (1) Min pressure at customer 
demand nodes, (2) min/max water levels at 
storage tanks, (3) volume deficit in storage 
tanks at the end of the scheduling period.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on during a time 
interval).
Note: One MO model including all objectives.

EPANET (EPS).
Optimisation method: 
NSGA-II.

different customer types were adapted from a real system titled the 
Wimmera Mallee Pipeline, western Victoria, Australia.

 Time horizon is 5 days (120 hours) divided into 1-hour intervals.
 It was discovered that 2 types of trade-offs, competing and 

noncompeting, exist between the objectives and that the type of trade-off 
is not unique between a particular pair of objectives for all scenarios. The 
nature of a trade-off between pumping costs and water quality objectives, 
and between multiple water quality objectives, can be categorized by 
consistent water quality (CWQ) or inconsistent water quality (IWQ) 
sources. These sources are identified based on the relationship between 
water quality conditions in source reservoirs and customer water quality 
requirements.

 Proposed methodology can assist in long-term operational planning for 
optimal pump and water quality control.

 Test networks: (1) EPANET Example 3 (incl. 94 nodes) (USEPA 
2013).

106. Odan et al. (2015)
MO
Optimal pump operation in real-
time including demand 
forecasting and system 
operational reliability using 
AMALGAM.

Objective (1): Minimise (a) the pump 
operating costs (energy consumption charge).
Objective (2): Maximise (a) operational 
reliability.
Constraints: (1) Min pressure at any network 
node, (2) tank water levels at the end of the 
scheduling period, (3) max number of pump 
switches, (4) occurrence of hydraulic 
simulation errors and negative pressures.
Decision variables: (1) Pump statuses (binary, 
0 = pump off, 1 = pump on).
Note: One MO model including both 
objectives.

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
AMALGAM (Vrugt and 
Robinson 2007).

 Operational reliability objective is represented by four alternative 
measures: (i) entropy, (ii) modified resilience index, (iii) min reservoir 
level, (iv) surplus head.

 Demand forecasting is performed 24 hours ahead using the hybrid 
dynamic neural network (DAN2-H) (Odan and Reis 2012).

 To reduce the search space, decision variables are combined applying 
relative time control triggers (Lopez-Ibanez et al. 2011).

 Time horizon is 24 hours divided into 1-hour intervals. The 
optimization is performed every hour for the next 24 hours, with only 
the first hour pump schedule being implemented. Optimised pump 
schedules are postprocessed to ensure that nominated number of pump 
switches is not exceeded.

 Real-time data from the SCADA system is used for optimisation and 
optimal pump schedules implemented back via SCADA.

 The reliability measures based on minimum reservoir level and surplus 
head seem most suitable for real-time pump scheduling. The results 
demonstrate 13% of energy cost savings compared to historical system 
operation.

 Test networks: (1) Araraquara WDS (incl. 1236 nodes), São Paulo, 
Brazil.

107. Stokes et al. (2015a)
MO
Optimal pump operation 
including greenhouse gas (GHG) 
emissions using NSGA-II.

Objective (1): Minimise (a) the pump 
operating costs (as the cost of electricity).
Objective (2): Minimise (a) the GHG 
emissions associated with the use of electricity 
from fossil fuel sources for pumping purposes.

Water quality: N/A.
Network analysis: 
EPANET (EPS).
Optimisation method: 
NSGA-II.

 Different emission factors (EFs), majority of them time-varying, are 
used. These include actual 1-year EF, average EF, estimated 24-hour 
EF curve, and modified estimated 24-hour EF curve including various 
amounts of renewable energy generated. Sensitivity analysis of 6 
scenarios with different EFs is performed.
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Constraints: (1) Min pressure at network 
nodes, (2) min total volume of water pumped 
into each district metered area.
Decision variables: (1) Pump schedules 
(integer).
Note: One MO model including both 
objectives.

 Time horizon of 7 days or 1 year is used dependent on the scenario.
 Results indicate that (i) optimal solutions can be significantly affected 

by time-varying EFs, (ii) estimated 24-hour EF curves can be used to 
accurately replace actual EFs, and (iii) the amount of renewable energy 
generated can affect the magnitude of EF time variations, thus optimal 
solutions.

 Test networks: (1) D-Town network (incl. over 350 demand nodes) 
(Salomons et al. 2012).

Note: *SO = Single-objective (approach/model), MO = Multi-objective (approach/model). +Objective function is referred to as ‘objective’ in the column below due to space savings. 
**Conservation of mass of flow, conservation of energy, and conservation of mass of constituent (for water quality network analysis) are not listed. ++Control variables are listed, state 
variables resulting from network hydraulics are not necessarily listed. ?D = Design. ??OP = Operation.
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SIMULATION MODEL

Incorporate uncertainties in demands, pipe 
roughnesses and chemical reactions of 
constituents
Understand the impact of assumptions while 
using simplified simulation models or 
surrogate models
Develop methods for controlling the error of 
the surrogate model
Adapt benchmark networks to the needs of 
operational optimisation

z

z

z

z

OPTIMISATION MODEL

z Develop methods for selecting the best 
formulation for the problem at hand

z Calculate demand charges, taking into 
account uncertainties in demand

z Develop more appropriate expressions for 
characterising pipe maintenance costs

z Develop a general water quality optimisation 
model

z Formulate explicit pump scheduling with the 
reduced number of decision variables

OPTIMISATION METHOD

Develop computationally efficient 
optimisation methods for real-time 
implementation and/or complex water 
quality simulations
Perform search space reduction without 
compromising the fidelity of the optimisation 
model

z Develop methods for objective comparison 
of multiple optimisation techniques

z

z

z Develop methods for algorithm parameter 
selection for metaheuristics

SOLUTION POSTPROCESSING

z Evaluate the sensitivity of solution(s) to the 
problem formulation

z Develop methods for selecting a 
representative, sufficiently small and 
tractable subset of the non-dominated 
solutions from the Pareto set, for decision 
makers

z Analyse relationships between pumping 
costs and water quality for different realistic 
case studies of various configurations



Highlights

- A review of operational optimisation of water distribution systems is provided.
- Future challenges were identified, despite the large body of existing literature.
- Universally agreed formulation of an operational optimisation problem is needed.
- Algorithm performance for a particular problem requires improved understanding.
- A method for selecting only one solution for a real system needs to be developed.


