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Abstract The multi-tier Covariance Matrix Adapta-

tion Pareto Archived Evolution Strategy (m-CMA-PAES)

is an evolutionary multi-objective optimisation (EMO)

algorithm for real-valued optimisation problems. It com-

bines a non-elitist adaptive grid based selection scheme

with the efficient strategy parameter adaptation of the

elitist Covariance Matrix Adaptation Evolution Strat-

egy (CMA-ES). In the original CMA-PAES, a solution

is selected as a parent for the next population using an

elitist adaptive grid archiving (AGA) scheme derived

from the Pareto Archived Evolution Strategy (PAES).

In contrast, a multi-tiered AGA scheme to populate

the archive using an adaptive grid for each level of

non-dominated solutions in the considered candidate

population is proposed. The new selection scheme im-

proves the performance of the CMA-PAES as shown

using benchmark functions from the ZDT, CEC09, and

DTLZ test suite in a comparison against the (µ + λ)

Multi-Objective Covariance Matrix Adaptation Evolu-

tion Strategy (MO-CMA-ES). In comparison to MO-

CMA-ES, the experimental results show that the pro-

posed algorithm offers up to a 69% performance in-

crease according to the Inverse Generational Distance

(IGD) metric.
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1 Introduction

The quality of the set of candidate solutions to a multi-

objective optimisation problem can be assessed using

three criteria: proximity to the true Pareto front (i.e.

how close the set of candidate solutions is to the true

global solution set), diversity (i.e. how well distributed

the set of candidate solutions is over the true Pareto-

optimal front), and pertinency (i.e. how relevant the set

of candidate solutions is to a decision maker). An ideal

approximation set should be uniformly spread across

the true Pareto-optimal front (Deb, 2001), or - in real-

world problems at least - that part of it that represents

a useful subset of solutions to the problem 1 (Purshouse

and Fleming, 2007).

The vast majority of the current state-of-the-art

Evolutionary Multiobjective Optimisation (EMO) al-

gorithms employ elitism to enhance convergence to the

true Pareto-optimal front. Elitism ensures some or all

of the fittest individuals in a population at generation g

are inserted into generation g+1. Using this method, it

is possible to prevent the loss of the fittest individuals

which are considered to have some of the most valu-

able chromosomes in the population. However, in many

multi-objective optimisation problems, solutions exist

which may not be considered elite due to their objec-

tive value in regards to the population, but may contain

useful genetic information. This genetic information can

be utilised later in the search to move into unexplored

areas of the objective-space, but due to elitism and non-

1 For example, in the design of automotive engines there is
typically a trade-off between torque generated and emissions
produced. Designs at the extreme ends of this trade-off sur-
face (i.e. with good emissions but poor torque - or vice versa)
are usually not very useful for production automobiles.
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dominated sorting schemes it may be abandoned in the

early stages of the search.

The aim of this study is to counter the potential

negative effects resulting from elitist approaches to se-

lection (for example, the bounded Pareto archive used

in the Covariance Matrix Adaption - Pareto Archived

Evolution Strategy (CMA-PAES)) by not only preserv-

ing elite solutions but also focusing part of the function

evaluation budget on non-elitist solutions that have the

potential to contribute useful genetic information in the

future. To achieve this, a novel multi-tier adaptive grid

selection scheme is developed and combined with the

existing CMA-PAES algorithm, in a new augmented al-

gorithm named the Multi-tier Covariance Matrix Adap-

tation Pareto Archived Evolution Strategy. This novel

algorithm sacrifices a portion of the function evaluation

budget in favour of producing diverse approximation

sets consisting of solutions from areas of the objective

space which are difficult or impossible to obtain with an

elitism approach. With this feature, the final approxi-

mation set offers a better representation of the trade-off

surface, therefore allowing the decision maker to make a

more informed selection. The performance of this new

algorithm is then evaluated on several benchmarking

test suites from the literature.

The paper is organised as follows: Section 2 intro-

duces the field of evolutionary multi-objective optimisa-

tion and its performance characteristics, Section 3 in-

troduces the CMA-PAES algorithm and novel multi-

tier adaptive grid algorithm, Section 4 contains the ex-

perimental set-up and methods of performance assess-

ment, Section 5 presents and discusses the results, and

Section 6 draws some conclusions as well as suggesting

future research direction.

2 Background

2.1 Evolutionary algorithms

Evolutionary Algorithms (EAs) are an optimisation te-

chnique inspired by some of the concepts behind natural

selection and population genetics and are capable of it-

eratively evolving a population of candidate solutions

to a problem (Goldberg, 1989). They both explore the

solution space of a problem (by using variation opera-

tors such as mutation and recombination) and exploit

valuable information present in the previous generation

of candidate solutions (by using a selection operator

which gives preference to the best solutions in the pop-

ulation when creating the next generation of solutions

to be evaluated).

One of the main reasons evolutionary algorithms

are applicable across many different problem domains

(including those where conventional optimisation tech-

niques struggle) is their direct use of evaluation function

information, rather than derivative information or other

auxiliary knowledge. Derivative information (for exam-

ple) can be extremely difficult to calculate in many real-

world problems because the evaluation of candidate so-

lutions can be expensive. Evolutionary algorithms are

also robust to noisy solution spaces because of their

population based nature. This means that each gen-

eration contains more information about the shape of

the fitness landscape than would be available to con-

ventional, non-population based optimisation methods

(Michalewicz and Fogel, 2000).

Evolutionary algorithms have also been used in com-

bination with other approaches to optimisation to form

hybrid algorithms which have been applied successfully

to real-world problems (Sfrent and Pop, 2015). Hyper-

heuristics are a methodology in search and optimisa-

tion which are concerned with choosing an appropriate

heuristic or algorithm in any given optimisation context

(Burke et al, 2003), and can operate on meta-heuristics.

Hybrid algorithms indicate the benefits of using an ap-

proach which aim to combine existing algorithms and

heuristics such that a more general approach can be

taken to optimisation.

2.2 Evolutionary multi-objective optimisation

Many real-world optimisation problems involve the sat-

isfaction of several objectives which, in a general form,

can be described by a vector of objective functions f

and a corresponding set of decision variables v, as illus-

trated in equation 1.

min
f

(v) = (f1(v), f2(v), . . . , fM (v)) (1)

In many problems conflicts occur between objectives

such that it is not possible to find a single ideal solution

to the problem. In this case, the solution consists of a

set of Pareto optimal points - where any improvement

in one objective will lead to a deterioration in one or

more of the other objectives.

The quality of the set of non-dominated solutions

(known as the approximation set) can be characterised

by considering three main measures (Purshouse, 2003):

– The proximity of the approximation set to the true

Pareto front.

– The diversity of the distribution of solutions in the

approximation set.

– The pertinence of the solutions in the approxima-

tion set to the decision maker.
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These concepts are illustrated graphically in Fig. 1,

where a single objective value is defined as xm and an

objective vector of M objectives can be defined as X =

〈x1, x2, . . . , xM 〉. A preference vector can be defined as

P = 〈ρ1, ρ2, . . . , ρM 〉, where every entry ρm refers to

the goal which the corresponding objective values xm
must satisfy.

An ideal approximation set should contain solutions

that are as close as possible to the true Pareto front (i.e.

having good proximity) and provide a uniform spread

of solutions across the region of interest of the decision

maker (i.e. having a diverse set of candidate solutions

that are pertinent to the decision maker).

Fig. 1: Characterising the approximation set for a bi-

objective problem

Conventional multi-objective optimisation methods

often fail to satisfy all these requirements, with meth-

ods such as the weighted sum method (Hwang and Ma-

sud, 1979) and the goal attainment method (Gembicki,

1974) only capable of finding a single point from the

approximation set rather than a diverse distribution of

potential solutions. This means that such algorithms

do not fully capture the shape of the trade-off space

without running the optimisation routine many times.

In contrast, Evolutionary Algorithms (EAs) iteratively

evolve a population of candidate solutions to a prob-

lem in parallel and are thus capable of finding multiple

non-dominated solutions. This results in a diverse set of

potential solutions to choose from, rather than a single

solution that may not meet the required performance

criteria.

2.3 Obtaining good proximity

The primary goal in evolutionary multi-objective opti-

misation is finding an approximation set that has good

proximity to the Pareto front. This ensures that the

candidate solutions in this approximation set represent

optimal trade-offs between objectives. The early ap-

proaches to evolutionary multi-objective optimisation

were primarily concerned with guiding the search to-

wards the Pareto front, reflecting the importance of this

goal.

Convergence to the Pareto front is mainly driven by

selection for variation, where the best candidate solu-

tions are assigned the highest fitness (and thus have

the best chance of contributing to the next genera-

tion). Several techniques have been proposed to solve

the problem of assigning scalar fitness values to indi-

viduals in the presence of multiple objectives - with

Pareto-based methods generally being considered the

best. Several variants of Pareto based fitness assignment

methods exist (see Zitzler et al (2004) for more informa-

tion), but the general procedure is to rank individuals

in the approximation set according to some dominance

criterion, and then map fitness values to these ranks (of-

ten via a linear transformation). Mating selection then

proceeds using these fitness values.

The proximity of the approximation set to the true

Pareto front can be enhanced by the use of elitism.

Elitism aims to address the problem of losing good so-

lutions during the optimisation process (Zitzler et al,

2004), either by maintaining an external population

of non-dominated solutions (commonly referred to as

an archive), or by using a (µ + λ) type environmental

selection mechanism. Studies have shown that elitist

MOEAs perform favourably when compared to their

non-elitist counterparts (Zitzler and Thiele, 1999; Zit-

zler et al, 2000a). Elitism has also been shown to be

a theoretical requirement to guarantee convergence of

an MOEA in the limit condition (Rudolph and Agapie,

2000).

In archive based elitism, the archive can be used

either just to store good solutions generated by the

MOEA, or can be integrated into the algorithm with

individuals from the archive participating in the selec-

tion process. Some mechanism is often needed to control

the number of non-dominated solutions in the archive,

since the archive is usually a finite size and the number

of non-dominated individuals can potentially be infi-

nite. Density based measures to preserve diversity are

commonly used in this archive reduction - for example,

the Pareto Archived Evolution Strategy (Knowles and

Corne, 2000a) uses an adaptive crowding procedure to

preserve diversity (see later).
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An alternative elitist strategy is the (µ + λ) popu-

lation reduction scheme, where the parent population

and the child population compete against each other for

selection. This scheme originated in Evolution Strate-

gies and forms the basis of the environmental selection

scheme used in algorithms such as NSGA-II (Deb et al,

2002a) and, more recently, the Multi-Objective Covari-

ance Matrix Adaptation Evolutionary Strategy (MO-

CMA-ES) (Igel et al, 2007). In both these algorithms

a two level sorting process is used, with Pareto dom-

inance as the primary sorting criteria and population

density as a secondary sorting criteria (used as a tie-

breaker amongst individuals having the same level of

non-dominance).

MO-CMA-ES is a state-of-the-art elitist multiob-

jective evolutionary optimisation technique that builds

upon the powerful covariance matrix adaptation evo-

lution strategy (CMA-ES) real-valued single objective

optimiser (Hansen and Ostermeier, 2001; Hansen et al,

2003). The key features of CMA-ES are that it is invari-

ant against linear transformations of the search space,

performs extremely well across a broad spectrum of

problems in the continuous domain (Auger and Hansen,

2005), and is robust to the initial choice of parameters

(due to its advanced self-adaptation strategy). These

make the CMA-ES algorithm an excellent choice to base

a multi-objective evolutionary optimisation on.

Two variants of MO-CMA-ES exist in the literature:

the s-MO-CMA-ES which achieves diversity using the

contributing hypervolume measure (or s-metric) intro-

duced by (Zitzler and Thiele, 1998), and the c-MO-

CMA-ES which achieves diversity using the crowding-

distance measure introduced in NSGA-II. Whilst ini-

tial results have shown that MO-CMA-ES is extremely

promising, it is as yet mostly untested on real-world en-

gineering problems. Some results show that MO-CMA-

ES struggles to converge to good solutions on prob-

lems with many deceptive locally Pareto-optimal fronts

- a feature that can be common in real-world problems

(Voß et al, 2010).

In the original MO-CMA-ES, a mutated offspring

solution is considered to be successful if it dominates its

parent. In contrast, (Voß et al, 2010) introduces a new

MO-CMA-ES variant which considers a solution suc-

cessful if it is selected to be in the next parent popula-

tion, introduces a new update rule for the self-adaptive

strategy, and conducts a comparison of MO-CMA-ES

variants on synthetic test functions consisting of up to

three objectives. MO-CMA-ES with the improved up-

date rule is shown to perform substantially better than

the original algorithm and is thus is used for compari-

son in Section 5 of this paper.

2.4 Obtaining good diversity

Most EMO algorithms use density information in the

selection process to maintain diversity in the approx-

imation set. However, diversity preservation has often

been seen as a secondary consideration (after obtaining

good proximity to the Pareto front). This is because,

as Bosman and Thierens (2003) state:

“. . . since the goal is to preserve diversity along

an approximation set that is as close as possi-

ble to the Pareto optimal front, rather than to

preserve diversity in general, the exploitation of

diversity should not precede the exploitation of

proximity.”

Goldberg (1989) initially suggested the use of a nic-

hing strategy in EMO to maintain diversity, with most

of the first generation of Pareto based EMO algorithms

using the concept of fitness sharing from single objec-

tive EA theory (Fonseca and Fleming, 1993; Horn et al,

1994; Srinivas and Deb, 1994). However, the success

of fitness sharing is strongly dependent on the choice

of an appropriate niche size parameter, σshare. Whilst

several authors proposed guidelines for choosing σshare
(Deb and Goldberg, 1989; Fonseca and Fleming, 1993),

Fonseca and Fleming (1995) were the first to note the

similarity between fitness sharing and kernel density

estimation in statistics which then provided the EMO

community with a set of established techniques for au-

tomatically selecting the niche size parameter, such as

the Epanechnikov estimator (Silverman, 1986).

A large number of the second generation of Pareto-

based MOEAs include advanced methods of estimating

the population density, inspired by statistical density
estimation techniques. These can be mainly classified

into histogram techniques (such as that used in PAES

(Knowles and Corne, 2000a)) or nearest neighbour den-

sity estimators (such as that used in SPEA2 (Zitzler

et al, 2001) and NSGA-II (Deb et al, 2002a)). Other

approaches to diversity preservation include the use of

hybrid algorithms, such as the Hybrid Immune-Genetic-

Algorithm (HIGA) Istin et al (2011), which uses an im-

mune component to continuously evolve new solutions

and then inject them back into the population of an

EA. These estimates of population density can be used

in both mating selection and environmental selection.

In mating selection these density estimates are com-

monly used to discriminate between individuals of the

same rank. Individuals from a less dense part of the

population are assigned higher fitness and thus have a

higher chance of contributing to the next generation.

Density estimation in environmental selection is co-

mmonly used when there exists more locally non domi-

nated solutions than can be retained in the population.
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For example, in archive based elitism, density based

clustering methods are often used to reduce the archive

to the required size. Non-dominated solutions from spa-

rser regions of the search space are again preferred over

those from regions with higher population densities,

with the aim being to ensure that the external pop-

ulation contains a diverse set of candidate solutions in

close proximity to the Pareto front.

The Pareto Archived Evolution Strategy (Knowles

and Corne, 2000a) uses an adaptive crowding procedure

to preserve diversity that recursively divides up the ob-

jective space into grid segements. This bounded Pareto

archiving technique then uses this adaptive grid to keep

track of the density of solutions within sections of the

objective space (Knowles and Corne, 1999). Since it is

adaptive, this crowding procedure does not require the

critical setting of a niche size parameter which was a

common problem with traditional kernel based methods

of diversity preservation. This Adaptive Grid Archiving

(AGA) scheme uses a grid with a pre-configured num-

ber of divisions to divide the objective space and, when

a solution is generated, its grid location is identified

and associated with it. Each grid location is considered

to contain its own sub-population, and information on

how many solutions in the archive are located within

a certain grid location is available during the optimisa-

tion process. Fig. 2 illustrates this grid archiving scheme

in two dimensions, in this example it can be observed

that the sub-population at grid location 91 holds a sin-

gle solution whereas the sub-population at grid location

62 contains many more. With this additional informa-

tion, it is possible to discard a solution from one of the

more densely populated sub-populations in favour of a

candidate solution which will be located in a sparsely

populated sub-population e.g. the one located at grid

location 91.

When an archive has reached capacity and a new

candidate solution is to be archived, the information

tracked by the AGA is used to replace a solution in

the grid location containing the highest number of so-

lutions. When a candidate solution is non-dominated

in regards to the current solution and the archive, the

grid information is used to select the solution from the

least populated grid location as the current (and par-

ent) solution.

The AGA concept used in PAES later inspired sev-

eral researchers and was altered and deployed in multi-

ple EMO algorithms such as the Pareto Envelope-based

Selection Algorithm (PESA) (a population based ver-

sion of PAES) (Corne et al, 2000), the Micro Genetic

Algorithm (Coello Coello and Pulido, 2001), and the

Domination Based Multi-Objective Evolutionary Algo-

rithm (ε-MOEA) (Deb et al, 2005).
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Fig. 2: An example plot of a population and visualisa-

tion of grid divisions managed by an AGA.

2.5 Issues with elitism

Whilst elitism has been almost universally adopted in

the current state-of-the-art for evolutionary multi ob-

jective optimisers, in many multi-objective optimisation

problems solutions may exist which are not considered

elite due to their objective value in regards to the popu-

lation but may still contain useful genetic information.

This genetic information can be utilised later in the

search to move into unexplored areas of the objective-

space but, due to elitism and non-dominated sorting

schemes, it may be abandoned in the early stages of

the search.

The consequences of elitism and non-dominated so-

rting can be seen in Figure 3, where an elitist EMO

algorithm has produced an approximation set for the

CEC09 UF1 (Zhang et al, 2008b) test function with a

budget of 300,000 function evaluations (in compliance

with the CEC09 competition rules).

By observing this two-objective plot of the approx-

imation set, it can be seen that the elitist EMO al-

gorithm has converged to an approximation set which

is missing three distinct areas containing solutions in

comparison to the true Pareto-optimal front plotted in

Figure 4. The genetic information which would have

potentially found these missing areas was discarded by

the algorithm during the search process due to the use

of elitism and non-dominated sorting. This is a diffi-

culty that occurs in the CEC09 UF1 test problem be-

cause of its complicated Pareto-optimal set, which has
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Fig. 3: An approximation set found using an elitist

EMO algorithm after 300,000 function evaluations on

CEC09 UF1.

some regions that are easier to reach. In these cases, eli-

tist EMO algorithms will focus selection on these more

dominant solutions and converge further into that area

of the Pareto-optimal-set, discarding individuals which

may have been only a few generations away from pro-

ducing non-dominated solutions in unexplored areas of

the objective-space.

Fig. 4: The true Pareto-optimal front (left) and Pareto-

optimal set (right) for CEC09 UF1.

Figure 5 illustrates an example of elitist and non-

dominated selection discarding an individual that may

contain valuable genetic information, which could have

been exploited to produce a better quality approxi-

mation set. In this example a Pareto AGA selection

scheme has been used to select parent individuals for

the next generation. Because of the scheme’s elitist na-

ture, the individual between 0.6 and 0.7 on the x-axis

has not been selected for reproduction, and therefore

the scheme has discarded genetic information which

may have ultimately produced solutions towards the

missing area of the approximation set. This behaviour

over many generations can lead to convergence to in-

complete approximation sets.

Fig. 5: An example of elitist and non-dominated selec-

tion, circled points indicate a selected individual.

3 CMA-PAES

The Covariance Matrix Adaptation Pareto Archived

Evolution Strategy is an extensible EMO algorithm fra-

mework (Rostami and Shenfield, 2012) inspired by the

simplicity of PAES (Knowles and Corne, 2000b). As a

result the execution life-cycle of the optimisation pro-

cess does not have a high computational cost in re-

gards ot algorithm overhead. The modular structure of

the algorithm has allowed for the Covariance Matrix

Adaptation (CMA) operator to be easily incorporated

in order to achieve fast convergence through the power-

ful variation of population solutions. To manage these

populations at each generational iteration, an Adaptive

Grid Algorithm (AGA) approach is used in conjunction

with bounded Pareto archiving with the aim of diver-

sity preservation.

The algorithm execution life-cycle for CMA-PAES

has been illustrated in Figure 6. CMA-PAES begins

by initializing the algorithm variables and parameters,

these include the number of grid divisions used in the

AGA, the archive for storing Pareto-optimal solutions,

the parent vector Y and the covariance matrix. An ini-

tial current solution is then generated at random, which

is evaluated and then the first to be archived (without

being subjected to the PAES archiving procedure). The

generational loop then begins, the square root of the

covariance matrix is resolved using Cholsky decompo-

sition (as recommended by Beyer and Sendhoff (2008))
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which offers a less computationally demanding alter-

native to spectral decomposition. The λ candidate so-

lutions are then generated using copies of the current

solution and the CMA-ES procedure for mutation be-

fore being evaluated. The archive is then merged with

the newly generated offspring and subjected to Pareto

ranking, this assigns a rank of zero to all non-dominated

solutions, and a rank reflecting the number of solutions

that dominate the inferior solutions. The population is

then purged of the inferior solutions so that only non-

dominated solutions remain before being fed into the

PAES archiving procedure. After the candidate solu-

tions have been subjected to the archiving procedure

and the grid has been adapted to the new solution cov-

erage of objective space, the archive is scanned to iden-

tify the grid location with the smallest population, this

is considered the lowest density grid population (ldgp).

The solutions from the lowest density grid population

are then spliced onto the end of the first µ − ldgp of

the Pareto rank ordered population to be included in

the adaptation of the covariance matrix, with the aim

to improve the diversity of the next generation by en-

couraging movement into the least dense area of the

grid. After the covariance matrix is updated, the gen-

erational loop continues onto its next iteration until

the termination criteria is satisfied (maximum number

of generations).

Fig. 6: Execution life-cycle for the CMA-PAES algo-

rithm.

CMA-PAES has been benchmarked against NSGA-

II and PAES in Rostami and Shenfield (2012) on the

ZDT synthetic test suite. Two performance metrics were

used to compare the performance in terms of proximity

(using the generational distance metric) and diversity

(using the spread metric). CMA-PAES displayed su-

perior performance (the significance of which was sup-

ported with randomisation testing) in returning an ap-

proximation set close to or on the true Pareto-optimal

front as well as maintaining diversity amongst solutions

in the set.

CMA-PAES has also been benchmarked against the

MO-CMA-ES algorithm in Rostami (2014), using the

hypervolume indicator as a measure of performance.

In this study, both the algorithms considered demon-

strated comparable performance across multiple test

problems. the significance of which was supported by

the use of non-parametric testing.

3.1 A Novel Multi-Tier Adaptive Grid Algorithm

The new multi-tier AGA aims to prevent a population

from prematurely converging as a result of following

only the dominant (i.e. elite) solutions which may be

discovered early in the optimisation process. This com-

mon optimisation scenario often results in genetic drift

and consequently a final approximation set with solu-

tions clustered around these elite solutions. This pre-

vention is achieved by dividing an optimisation function

evaluation budget and investing a percentage of this

budget in to non-elite solutions. This solutions which

appear non-elite early on in the optimisation process

may potentially contain genetic information that would

contribute to finding undiscovered areas of the objec-

tive space later in the search.

The algorithm pseudo-code for this new multi-tier

approach is listed in Algorithm 1, which is executed

from line 14 of the Multi-tier Covariance Matrix Adap-

tation Pareto Archived Evolution Strategy (m-CMA-
PAES) execution life-cycle presented in Algorithm 2.

This new optimisation algorithm which builds upon the

algorithmic components (AGA and CMA) outlined in

Fig. 6 is referred to as the m-CMA-PAES. First, the

candidate population is divided into sub-populations

based on their non-dominated rank using NSGA-II’s

fast non-dominated sort. If the size of any sub-population
exceeds µ, then the standard AGA scheme is applied to

it with a maximum archive capacity of µ, resulting in a

number of rank-ordered archives each with a maximum

capacity of µ. Then, a single population of size µ plus

the budget for non-elite individuals β is produced, for

example if β is set as 10% for a µ population of 100,

then a population of size 100× 1.10 is to be produced.

Next the multi-tier archives containing the first µ × β
solutions are merged with no size restriction (meaning

the merged archive size can be greater than µ × β).

This merged archive is then subjected to a non-elite

AGA (ensuring non-elite solutions are not instantly dis-

carded) with an archive capacity of µ, producing a pop-
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ulation of individuals to be selected as parents for the

next generation.

The configuration of β is important to the conver-

gence of the algorithm - if it is too high (for example

if it is greater than half of µ), then the majority of the

function evaluation budget is spent on solutions which

are dominated and the search does not progress in a

positive direction, and may instead move away from

the Pareto-optimal front. However if β is too small, the

benefits of investing in non-elite solutions are not ex-

ploited to an extent which will significantly impact the

performance of the optimisation process. The result of

this new grid selection scheme has been illustrated in

Figure 7, where the solution which may potentially con-

tain valuable genetic information is selected, in contrast

to it being discarded in Figure 5.

Fig. 7: An example of the multi-tiered grid selection,

circled points indicate a selected individual.

Algorithm 1 Pseudo-code of Multi-Tier Adaptive

Grid Algorithm: multiTierSelect()

1: nonDominatedFronts = nonDominatedSort(population)
2: spaceRemaining = µ× β
3: for all nonDominatedFront in nonDominatedFronts do
4: if spaceRemaining > 0 then
5: tierArchive = adaptiveGridSelec-

tion(nonDominatedFront, µ)
6: archive = archive + tierArchive
7: spaceRemaining = spaceRemaining - size(archive)
8: end if

parentPopulation = adaptiveGridSelection(archive,
µ)

9: end for

In m-CMA-PAES, a population of candidate solu-

tion individuals ai
(g) are initialized as the structure[

xi
(g), p̄

(g)
succ,i, σi

(g), p
(g)
i,c ,C

(g)
i

]
, where each individual is

assigned a randomly generated problem variable xi
(g) ∈

Rn between the lower (x(L)) and upper (x(U)) vari-

able boundaries, p̄
(g)
succ,i ∈ [0, 1] is the smoothed success

probability, σi
(g) ∈ R+

0 is the global step size, p
(g)
i,c ∈ Rn

is the cumulative evolution path, and C
(g)
i ∈ Rn×n is

the covariance matrix of the search distribution.

Algorithm 2 m-CMA-PAES life-cycle

1: g ← 0
2: initialise parent population Qg

3: while termination criteria not met do
4: for k = 1, ..., λ do
5: ik ← k;

6: a
′ (g+1)
k ← ai

(g)
k

7: x
′ (g+1)
k ∼ xi(g)k + σi

(g)
k N

(
0, Ci

(g)
k

)
;

8: if x(L) � x
′ (g+1)
k � x(U) then

9: x
′ (g+1)
k =

{
x(U) if x

′ (g+1)
k > x(U)

x(L) otherwise

10: end if
11: Q

(g)
µ+k ←

{
a

′ (g+1)
k

}
;

12: end for
13: end while
14: Qg+1 = multiT ierSelect(Qg) (Executes Algorithm 1)
15: updateParameters() (Executes CMA Algorithm)
16: g ← g + 1

4 Experimental design and performance

assessment

4.1 Experimental set-up

In order to evaluate the performance of m-CMA-PAES

on multi-objective test problems, a pairwise comparison

between m-CMA-PAES and MO-CMA-ES on selected

benchmark problems from the literature (consisting of

upto 3 objectives) has been conducted. MO-CMA-ES

(as outlined in Section 2.3) is a state-of-the-art algo-

rithm which uses the CMA operator for variance much

like m-CMA-PAES.

Both m-CMA-PAES and MO-CMA-ES have been

configured with a budget of 300, 000 function evalua-

tions per algorithm execution, and were executed 30

times per test function as per the CEC2009 competition

guidelines. The algorithm configurations are presented

in Table 1, and the finer configurations for the CMA

operator and MO-CMA-ES have been taken from Voß

et al (2010), where the version of MO-CMA-ES used

incorporates the improved step-size adaptation.



A Multi-Tier Adaptive Grid Algorithm for the Evolutionary Multi-Objective Optimisation of Complex Problems 9

Table 1: Algorithm configurations used when bench-

marking MO-CMA-ES and m-MA-PAES.

Parameter MO-CMA-ES m-CMA-PAES

µ 2D(100),3D(300) 2D(100),3D(300)
λ 2D(100),3D(300) 2D(100),3D(300)
Archive Capacity — 2D(100),3D(300)
Multi-tier Budget — 10%
Divisions — 10

The ZDT, DTLZ, and CEC2009 test suites have

been selected for the benchmarking and comparison

of m-CMA-PAES and MO-CMA-ES (see Section 4.2).

These test suites will pose both MOEAs with difficul-

ties which are likely to be encountered in many real-

world multi-objective optimisation problems, in both

two-dimensional and three-dimensional objective spaces

(allowing for feasible comparison with MO-CMA-ES

which relies on the hypervolume indicator for secondary

sorting and is thus computationally expensive in high-

dimensional search spaces).

The metric used for performance assessment is the

popular Inverted Generational Distance (IGD) indica-

tor described in Section 4.3. The IGD indicator will

be used at each generation in order to assess perfor-

mance, and compare both algorithms on not just the

IGD quality of the final approximation set, but also

the IGD quality over time. In order to comply with the

CEC2009 competition rules (as described in Zhang et al

(2008b)), both m-CMA-PAES and MO-CMA-ES have

been executed 30 times on each test function to reduce

stochastic noise. This sample size is seen as sufficient

because of the limited benefit of producing more than
25 samples (discussed in Section 4.1.1).

4.1.1 Sample Size Sufficiency

Selecting a sufficient number of samples when compar-

ing optimisers is critical. The sample size of 25, in order

to reduce stochastic noise, is re-occurring in the evolu-

tionary computation literature (e.g. Yang et al (2008);

Zamuda et al (2007); De Falco et al (2012); Garćıa et al

(2009); Wang et al (2011)). To prove the sufficiency of

this sample size, a large number of hypervolume indi-

cator value samples have been produced by executing

m-CMA-PAES 200 times on the DTLZ1 synthetic test

problem.

These 200 samples were then used to identify the

relationship between the Standard Error of the Mean

(SEM) and the sample size using:

SEM =
SD√
N

(2)

This relationship has been illustrated in Figure 8,

which shows the limited benefit of more than 25 inde-

pendent executions of the algorithm on the synthetic

test problem.

Fig. 8: Relationship between Standard Error of the

Mean (SEM) and the sample size of hypervolume in-

dicator values from 200 executions of m-CMA-PAES

on the DTLZ1 synthetic test problem.

sizes, evolution paths and covariance matrices of the

successful solutions are updated.

4.2 Multi-objective Test Suites

The performance of the novel m-CMA-PAES algorithm

is compared to MO-CMA-ES across three different real-
valued, synthetic, test suites: the widely used ZDT bi-

objective test suite proposed in Zitzler et al (2000b), the

scalable DTLZ multi-objective test suite proposed in

Deb et al (2002b); and the unconstrained functions from

the CEC2009 multi-objective competition test suite pro-

posed in Zhang et al (2008b). The configurations used

for these test problems and some of their slaient fea-

tures are shown in Table 2

Each of these test suites incorporates a different

balance of features that MOEAs may find difficult to

overcome during the optimisation process (for example,

multi-modal search landscapes, deceptive local Pareto-

fronts, non-convex Pareto-fronts, etc.). The ZDT and

DTLZ test suites provide well defined Pareto-optimal

fronts that have been widely used in the literature -

thus allowing easy comparison with previous work. The

CEC2009 multi-objective optimisation competition test

suite is more recent and is predominantly made up of

problems with solution sets that consist of complex

curves through decision variable space. These test prob-
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Table 2: Parameter configurations used for the ZDT,

DTLZ and CEC09 test suites.

Problem # Var # Obj Salient features

ZDT1 30 2 convex front
ZDT2 30 2 concave front
ZDT3 30 2 disconnected front
ZDT4 10 2 convex front,

many local optima
ZDT6 10 2 concave front,

non uniform distribution
DTLZ1 7 3 linear front
DTLZ2 12 3 spherical front
DTLZ3 12 3 spherical front,

many local optima
DTLZ4 12 3 spherical front,

non uniform distribution
DTLZ5 12 3 spherical front,

difficult to find true front
DTLZ6 12 3 disconnected front
DTLZ7 22 3 disconnected front
UF1 30 2 nonlinear decision space
UF2 30 2 nonlinear decision space
UF3 30 2 many local fronts
UF4 30 2 non-convex front
UF5 30 2 discrete points on

a linear hyperplane
UF6 30 2 disconnected front
UF7 30 2 linear hyperplane front
UF8 30 3 spherical front
UF9 30 3 disconnected front
UF10 30 3 spherical front

lems contain variable linkages and present many diffi-

culties for multi-objective optimisation routines.

4.3 Performance Assessment

As the EMO process is stochastic by nature, each algo-

rithm was executed 30 times against each test function,

in an effort to minimise stochastic noise and increase

the integrity of the comparison between the algorithms

(see Section 4.1.1). The performance of each algorithm

execution was then measured using the Inverted Gen-

erational Distance (IGD) performance metric to assess

the quality of the approximation set, in terms of prox-

imity to the true Pareto-optimal front and the diversity

of solutions in the population.

The IGD metric measures how well the obtained

approximation set represents the true Pareto-optimal

front which is provided as a large reference set. This is

calculated by finding the minimum Euclidean distance

of each point of the approximation set to points in the

reference set. Lower IGD values indicate a better qual-

ity approximation set with IGD values of 0 indicating

all the solutions in the approximation set are in the

reference set and cover all the Pareto front.

The IGD was introduced in Coello Coello and Cortés

(2005) as an enhancement to the generational distance

metric, measuring the proximity of the approximation

set to the true Pareto-optimal front in objective space.

The IGD can be defined as:

IGD =

√∑n′

i=1 d
2
i

n′
(3)

where n′ is the number of solutions in the reference

set, and d is the Euclidean distance (in objective space)

between each solution in the reference set and the near-

est solution in the approximation set. A GD value equal

to zero indicates that all members of the approxima-

tion set are on the true Pareto-optimal front, and any

other value indicates the magnitude of the deviation

of the approximation set from the true Pareto-optimal

front. This implementation of the GD solves an issue

in its predecessor so that it will not rate an approxi-

mation set with a single solution on the reference set

as better than an approximation set which has more

non-dominated solutions that are close in proximity to

the reference set.

Much like the GD measure, knowledge regarding the

true Pareto-optimal front is required in order to form

a reference set. The selection of solutions for the ref-

erence set will have an impact on the results obtained

from the IGD, and therefore the reference set must be

diverse. The calculation of the IGD can be computa-

tional expensive when working with large reference sets

or a high number of objectives.

The IGD measure has been employed in the perfor-

mance assessment of algorithms in much of the multi-

objective optimisation and evolutionary computation

literature (e.g. Zhang et al (2008a, 2010); Tiwari et al

(2009); Chen et al (2009); Nasir et al (2011)).

4.4 Statistical comparison of stochastic optimisers

Statistical comparison of the performance of the algo-

rithms was conducted by computing the t-values 2 of

the IGD metric produced by both the algorithms. How-

ever, when analysing stochastic systems (such as EAs)

the initial conditions that ensure the reliability of para-

metric tests cannot be satisfied (Li et al, 2012) - there-

fore a non-parametric test (encouraged by Derrac et al

(2011); Epitropakis et al (2012)) for pairwise statisti-

cal comparison must be used to evaluate the signifi-

cance of results. The Wilcoxon signed-ranks (Wilcoxon,

2 The t-value is the difference between the means of the
datasets divided by the standard error.
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1945) non-parametric test (counter-part of the paired t-

test) can be used with the statistical significance value

(α = 0.05) to rank the difference in performance be-

tween two algorithms over each approximation set.

Non-parametric testing is becoming more commonly

used in the literature to statistically contrast the per-

formance of evolutionary algorithms in many experi-

ments (Garćıa et al, 2010; Derrac et al, 2012; Li et al,

2012; Epitropakis et al, 2012; Hatamlou, 2013; Civi-

cioglu, 2013).

5 Results

The results from the experiments described in Section

4 have been produced and presented in a number of

formats in order to allow for a better assessment of

each algorithms performance.

The worst, mean, and best IGD indicator results

for the final approximation set of each algorithm are

presented in Table 3 for the two-objective test func-

tions, and in Table 4 for the three-objective test func-

tions. Tables 3 and 4 also present information regard-

ing the p-value resolved by the Wilcoxon signed-ranks

non-parametric test for the final approximation sets

of the considered synthetic test problems, and a sym-

bol indicating the observation of the null hypothesis.

A ’+’ symbol indicates that the null hypothesis was

rejected, and m-CMA-PAES displayed statistically su-

perior performance at the 95% significance level (α =

0.05) on the considered synthetic test function. A ’−’

symbol indicates that the null hypothesis was rejected,

and m-CMA-PAES displayed statistically inferior per-

formance. An ’=’ symbol indicates that there was no

statistically significant difference between both of the

considered algorithms on the synthetic test problem.

The table column ”%IGD” indicates the difference in

performance between m-CMA-PAES and MO-CMA-ES

using m-CMA-PAES as the benchmark. This percent-

age can be calculated by finding the normalised mean

performance of each algorithm:

%IGD = 100×
(
meana − worst
best− worst

− meanb − worst
best− worst

)
(4)

where meana is the mean performance for m-CMA-

PAES, meanb is the mean performance for MO-CMA-

ES, worst is the highest IGD achieved by either algo-

rithm, and best is the lowest IGD achieved by either

algorithm. A positive %IGD indicates the percentage

of which m-CMA-PAES outperformed MO-CMA-ES,

whereas a negative %IGD indicates the percentage of

which m-CMA-PAES was outperformed by MO-CMA-

ES.

Overall, m-CMA-PAES outperformed MO-CMA-ES

on all but 3 (ZDT3, UF6 and UF9) of the 22 test func-

tions, producing better performing worst, mean, and

best approximation sets.

The mean of the IGD metric at each generation has

been plotted and presented in Figure 9 for the two-

objective test functions, and Figure 11 for the three-

objective test functions. These plots illustrate the rate

of IGD convergence from the initial population to the

final population.

m-CMA-PAES significantly outperforms the MO-

CMA-ES on most of the test-functions used in this

comparison. However, as a consequence of investing a

percentage of the maximum number of function evalu-

ations in non-elite solutions, it can be observed in Fig-

ures 9 and 11 that the convergence of the algorithm is

slower in most cases (more so in the two-objective test

functions). This suggests that in experiments where the

number of function evaluations are not constrained to

a low number, the m-CMA-PAES will outperform MO-

CMA-ES.

It can be observed in Figures 9 and 11 that the mean

IGD for MO-CMA-ES oscillates or rises on some test

functions over time. This issue is most visible on UF4

(where the mean IGD for MO-CMA-ES can be seen

to oscillate over time) and on DTLZ3 (where the mean

IGD for MO-CMA-ES can be seen to improve in perfor-

mance until 200 generations and then worsen gradually

until termination). This issue is due to MO-CMA-ES

being dependent on the hypervolume indicator entirely

for diversity preservation which, when paired with its

elitism scheme, ends up gradually reducing the IGD

quality of an approximation set once a difficult area of

the search space is encountered.

The results presented in Table 3 and Table 4, as well

as the box plots presented in Figure 13 and Figure 14,

show that on 18 of the 22 considered test functions m-

CMA-PAES significantly outperformed MO-CMA-ES

in regards to the achieved mean and median IGD. The

box plots show that the interquartile ranges for the m-

CMA-PAES results are significantly better than the in-

terquartile ranges for the MO-CMA-ES results. Across

all test functions m-CMA-PAES produces fewer outliers

- indicating a more reliable and robust algorithm than

MO-CMA-ES on the considered test functions.

On the UF3 test function, it can be observed (in Fig-

ure 13) that, although the MO-CMA-ES median IGD

outperforms m-CMA-PAES, m-CMA-PAES achieved a

better interquartile range and a far better total range -

achieving the best approximation set for that test func-

tion. A similar result can be seen in the performance
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Fig. 9: IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000

function evaluations on two-objective test problems, 30 runs.
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Table 3: IGD results from 30 executions of m-CMA-PAES and MO-CMA-ES on the ZDT and CEC09 test suites

with two problem objectives.

m-CMA-PAES MO-CMA-ES

2D Best Mean Worst Best Mean Worst p-value %IGD

ZDT1 0.00628 0.00657 0.00686 0.00813 0.00936 0.01031 1.4e-09 69.23% +
ZDT2 0.00592 0.00614 0.00639 0.00989 0.01172 0.01511 1.4e-09 60.72% +
ZDT3 0.00574 0.00609 0.00676 0.00552 0.00594 0.00643 0.0625 -12.10% =
ZDT4 1.80044 6.17983 11.44563 2.85512 8.35397 14.56593 0.0232 17.03% +
ZDT6 0.01132 0.01279 0.01406 0.04788 0.08938 0.20901 1.4e-09 38.74% +
UF1 0.03762 0.05824 0.06579 0.05044 0.07228 0.12375 1.1e-06 17.00% +
UF2 0.01359 0.02006 0.02687 0.02117 0.03496 0.05235 5.5e-08 38.44% +
UF3 0.04869 0.07992 0.12647 0.06044 0.08129 0.10133 0.7269 1.76% =
UF4 0.05925 0.06431 0.06942 0.07661 0.08261 0.09722 1.4e-09 48.20% +
UF5 0.49880 0.72982 1.04816 0.87997 1.04873 1.26644 8.3e-09 41.54% +
UF6 0.08817 0.12736 0.22802 0.09314 0.11268 0.22469 0.010432 -10.50% –
UF7 0.01791 0.02431 0.03226 0.03306 0.06434 0.12773 1.4e-09 36.45% +

Table 4: IGD results from 30 executions of m-CMA-PAES and MO-CMA-ES on the DTLZ and CEC09 test suites

with three problem objectives.

m-CMA-PAES MO-CMA-ES

3D Best Mean Worst Best Mean Worst p-value %IGD

UF8 0.13308 0.18188 0.23023 0.16091 0.23432 0.24924 3.6e-08 45.14% +
UF9 0.07381 0.07877 0.08795 0.06755 0.07440 0.07911 5.4e-05 -21.45% –
UF10 0.64046 0.97907 1.34102 1.33073 1.90805 2.89107 1.6e-09 41.28% +
DTLZ1 0.60928 3.11971 5.72913 2.11988 10.1829 20.9531 1.2e-06 34.72% +
DTLZ2 0.03919 0.04005 0.04077 0.04207 0.04491 0.04939 1.4e-09 7.06% +
DTLZ3 22.4023 50.7571 102.51 171.175 188.531 229.147 1.4e-09 66.64% +
DTLZ4 0.02459 0.03090 0.04093 0.03181 0.04411 0.07016 5.5e-08 28.99% +
DTLZ5 0.00152 0.00174 0.00201 0.00190 0.00213 0.00259 8.3e-09 11.21% +
DTLZ6 0.11059 0.32162 0.65582 0.19705 0.42455 0.71631 0.01701 16.99% +
DTLZ7 0.05268 0.05783 0.06449 0.05824 0.06653 0.07449 2.9e-08 39.89% +

on UF6 where m-CMA-PAES also achieves the best ap-

proximation set but is outperformed by MO-CMA-ES

on the median values of the IGD results.

The MO-CMA-ES significantly outperforms the m-

CMA-PAES on UF9. This function (as well as ZDT3

and UF6) consists of disjoint true Pareto-optimal fronts

as shown in Figure 15. The comparison in performance

on these problems shows that the m-CMA-PAES has

performance issues on some problems consisting of mul-

tiple parts in their Pareto-optimal fronts.

6 Conclusion

In this paper, a multi-tier AGA scheme has been intro-

duced and incorporated into the CMA-PAES algorithm

to create m-CMA-PAES. m-CMA-PAES improves the

quality of the produced final approximation set by in-

vesting a percentage of the allowed function evaluation

budget in non-elite but potentially successfully solu-

tions. With this approach, m-CMA-PAES is able to

find portions of the Pareto-optimal front which remain

unexplored by elitist approaches. Experiments and sta-

tistical analysis presented in this study show that with

CEC09 competition compliant benchmarking configu-

rations, m-CMA-PAES significantly outperforms MO-

CMA-ES on all but 4 of the 22 considered synthetic

test problems, and out of these 4, MO-CMA-ES only

performs statistically significantly better on 2 test func-

tions.

When observing the IGD values at each generation,

it can be seen that in some cases the IGD of the final

population is higher than some of the generations be-

fore it, this is due to the non-elite solutions invested

in at each generation being a factor right to the end

of the algorithm. This suggests that in further work

the algorithm may benefit from either an offline archive

which the algorithm selects from at the end of the opti-

misation process or a final approximation set selection

scheme which uses the last two generations of the op-
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Fig. 10: IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000

function evaluations on two-objective test problems, 30 runs.

timisation process, including non-dominated solutions

only.

The results indicate a clear trade-off between m-

CMA-PAES and MO-CMA-ES. In the majority of the

benchmarks MO-CMA-ES appears to offer a faster rate

of convergence. However, this comes at the cost of pre-

mature convergence very early in the optimisation pro-

cess. In contrast, m-CMA-PAEs offers a slower rate

of convergence throughout the entire optimisation pro-

cess, with steady improvement until the end of the func-

tion evaluation budget. Unlike MO-CMA-ES, m-CMA-

PAES does not subject the entire non-dominated pop-

ulation to the contributing hypervolume indicator. By

not doing so m-CMA-PAES remains computationally

lightweight, unlike MO-CMA-ES which becomes com-

putationally infeasible as the number of problem objec-

tives increase. By investing a portion of the function

evaluation budget in non-elite solutions, areas of the

Pareto-optimal front which are difficult to obtain can

be discovered later on in the optimisation process. This

results in improved diversity and coverage in the pro-

duced approximation sets.

Future works will further investigate the possibil-

ity for self-adaptation of the m-CMA-PAES algorithm

parameter which defines the budget for non-elite in-

dividuals (β). A current limitation of m-CMA-PAES

requires the manual configuration of the β parameter,

which may result in inefficient usage of the function

evaluation budget when parameters such as the popula-

tion size and the number of problem objectives change.

Compliance with Ethical Standards:

Conflict of Interest: Dr. Shahin Rostami declares that

he has no conflict of interest. Dr. Alex Shenfield declares

that he/she has no conflict of interest.

Ethical approval: This article does not contain any

studies with human participants or animals performed

by any of the authors.

References

Auger A, Hansen N (2005) A restart cma evolution

strategy with increasing population size. In: Evolu-

tionary Computation, 2005. The 2005 IEEE Congress

on, IEEE, vol 2, pp 1769–1776

Beyer H, Sendhoff B (2008) Covariance matrix adap-

tation revisited–the cmsa evolution strategy–. In:

Parallel Problem Solving from Nature–PPSN X,

Springer, pp 123–132

Bosman PAN, Thierens D (2003) The balance between

proximity and diversity in multiobjective evolution-



A Multi-Tier Adaptive Grid Algorithm for the Evolutionary Multi-Objective Optimisation of Complex Problems 15

250 500 750 1000

0.50

1.00

1.50

2.00

2.50

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(a) UF8

250 500 750 1000

0.50

1.00

1.50

2.00

2.50

Generation

IG
D

 

 

CMA−PAES mean

MO−CMA−ES mean

m-CMA-PAES mean

(b) UF9

250 500 750 1000

 2.00

 4.00

 6.00

 8.00

10.00

12.00

14.00

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(c) UF10

250 500 750 1000

 5.00

10.00

15.00

20.00

25.00

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(d) DTLZ1

250 500 750 1000

0.05

0.10

0.15

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(e) DTLZ2

250 500 750 1000

 60.00

 80.00

100.00

120.00

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(f) DTLZ3

250 500 750 1000

0.05

0.10

0.15

0.20

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(g) DTLZ4

250 500 750 1000

0.05

0.10

0.15

0.20

0.25

0.30

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(h) DTLZ5

Fig. 11: IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000

function evaluations on three objective test problems, 30 runs.



16 Shahin Rostami, Alex Shenfield

250 500 750 1000

0.50

1.00

1.50

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(a) DTLZ6

250 500 750 1000

1.00

2.00

3.00

4.00

5.00

6.00

Generation

IG
D

 

 

m−CMA−PAES mean

MO−CMA−ES mean

(b) DTLZ7
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function evaluations on three objective test problems, 30 runs.
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