15 research outputs found

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice

    No full text
    Background— Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disorder that causes sudden death and right ventricular heart failure in the young. Clinical data suggest that competitive sports may provoke ARVC in susceptible persons. Genetically, loss-of-function mutations in desmosomal proteins (plakophilin, desmoplakin, or plakoglobin) have been associated with ARVC. To test the hypothesis that reduced desmosomal protein expression causes ARVC, we studied the cardiac effects of heterozygous plakoglobin deficiency in mice. Methods and Results— Ten-month-old heterozygous plakoglobin-deficient mice (plakoglobin+/–) had increased right ventricular volume, reduced right ventricular function, and spontaneous ventricular ectopy (all P<0.05). Left ventricular size and function were not altered. Isolated, perfused plakoglobin+/– hearts had spontaneous ventricular tachycardia of right ventricular origin and prolonged right ventricular conduction times compared with wild-type hearts. Endurance training accelerated the development of right ventricular dysfunction and arrhythmias in plakoglobin+/– mice. Histology and electron microscopy did not identify right ventricular abnormalities in affected animals. Conclusions— Heterozygous plakoglobin deficiency provokes ARVC. Manifestation of the phenotype is accelerated by endurance training. This suggests a functional role for plakoglobin and training in the development of ARVC

    Electrophysiologic characterization of local abnormal ventricular activities in postinfarction ventricular tachycardia with respect to their anatomic location.

    No full text
    BACKGROUND Local abnormal ventricular activities (LAVA) in patients with scar-related ventricular tachycardia (VT) may appear at any time during or after the far-field electrogram. Although they may be separated from the far-field signal by an isoelectric line and extend beyond the end of surface QRS, they may also appear fused or buried within the QRS. OBJECTIVE The purpose of this study was to characterize LAVA in postinfarction VT patients with respect to their anatomic locations. METHODS Thirty-one patients with postinfarction VT underwent mapping/ablation during sinus rhythm with a three-dimensional electroanatomic mapping system. From a total of 18,270 electrograms reviewed in all study subjects, 1104 LAVA (endocardium 839, epicardium 265) were identified and analyzed. RESULTS The interval from onset of QRS complex to ventricular electrogram (EGM onset) on the endocardium was significantly shorter than the epicardium (P < .001). EGM onset was shortest in the septal endocardium and longest in the inferior and lateral epicardium. There was a significant positive correlation between EGM onset and LAVA lateness as estimated by the interval from surface QRS onset to LAVA (r = 0.52, P < .001). LAVA were more frequently detected after the QRS complex in the epicardium (241/265 [91%]) than in the endocardium (551/839 [66%], P < .001). Only 43% of endocardial septal LAVA were detected after the QRS complex. CONCLUSION Lateness of LAVA is affected to a large extent by their locations. The chance of detecting late LAVA increases when electrogram onset is later. Substrate-based approach targeting delayed signals relative to the QRS complex may miss critical the arrhythmogenic substrate, particularly in the septum and other early-to-activate regions

    Endocardial Ablation to Eliminate Epicardial Arrhythmia Substrate in Scar-Related Ventricular Tachycardia

    Get PDF
    OBJECTIVES We evaluated the feasibility and safety of epicardial substrate elimination using endocardial radiofrequency (RF) delivery in patients with scar-related ventricular tachycardia (VT). BACKGROUND Epicardial RF delivery is limited by fat or associated with bleeding, extra-cardiac damages, coronary vessels and phrenic nerve injury. Alternative ablation approaches may be desirable. METHODS Forty-six patients (18 ischemic cardiomyopathy [ICM], 13 non-ischemic dilated cardiomyopathy [NICM], 15 arrhythmogenic right ventricular cardiomyopathy [ARVC]) with sustained VT underwent combined endo- and epicardial mapping. All patients received endocardial ablation targeting local abnormal ventricular activities in the endocardium (Endo-LAVA) and epicardium (Epi-LAVA), followed by epicardial ablation if needed. RESULTS From a total of 173 endocardial ablations targeting Epi-LAVA at the facing site, 48 (28%) applications (ICM: 20/71 [28%], NICM: 3/39 [8%], ARVC: 25/63 [40%]) successfully eliminated the Epi-LAVA. Presence of Endo-LAVA, most delayed and low bipolar amplitude of Epi-LAVA, low unipolar amplitude in the facing endocardium, and Epi-LAVA within a wall thinning area at CT scan were associated with successful ablation. Endocardial ablation could abolish all Epi-LAVA in 4 ICM and 2 ARVC patients, whereas all patients with NICM required epicardial ablation. Endocardial ablation was able to eliminate Epi-LAVA at least partially in 15 (83%) ICM, 2 (13%) NICM, and 11 (73%) ARVC patients, contributing to a potential reduction in epicardial RF applications. Pericardial bleeding occurred in 4 patients with epicardial ablation. CONCLUSIONS Elimination of Epi-LAVA using endocardial RF delivery is feasible and may be used first to reduce the risk of epicardial ablation
    corecore