231 research outputs found
Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate
PURPOSE: To characterize the potential of newborn retinal stem cells (RSCs) isolated from the radial glia population to integrate the retina, this study was conducted to investigate the fate of in vitro expanded RSCs transplanted into retinas devoid of photoreceptors (adult rd1 and old VPP mice and rhodopsin-mutated transgenic mice) or partially degenerated retina (adult VPP mice) retinas. METHODS: Populations of RSCs and progenitor cells were isolated either from DBA2J newborn mice and labeled with the red lipophilic fluorescent dye (PKH26) or from GFP (green fluorescent protein) transgenic mice. After expansion in EGF+FGF2 (epidermal growth factor+fibroblast growth factor), cells were transplanted intravitreally or subretinally into the eyes of adult wild-type, transgenic mice undergoing slow (VPP strain) or rapid (rd1 strain) retinal degeneration. RESULTS: Only limited migration and differentiation of the cells were observed in normal mice injected subretinally or in VPP and rd1 mice injected intravitreally. After subretinal injection in old VPP mice, transplanted cells massively migrated into the ganglion cell layer and, at 1 and 4 weeks after injection, harbored neuronal and glial markers expressed locally, such as beta-tubulin-III, NeuN, Brn3b, or glial fibrillary acidic protein (GFAP), with a marked preference for the glial phenotype. In adult VPP retinas, the grafted cells behaved similarly. Few grafted cells stayed in the degenerating outer nuclear layer (ONL). These cells were, in rare cases, positive for rhodopsin or recoverin, markers specific for photoreceptors and some bipolar cells. CONCLUSIONS: These results show that the grafted cells preferentially integrate into the GCL and IPL and express ganglion cell or glial markers, thus exhibiting migratory and differentiation preferences when injected subretinally. It also appears that the retina, whether partially degenerated or already degenerated, does not provide signals to induce massive differentiation of RSCs into photoreceptors. This observation suggests that a predifferentiation of RSCs into photoreceptors before transplantation may be necessary to obtain graft integration in the ONL
Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation
The polycomb transcriptional repressor Bmi1 promotes cell cycle progression, controls cell senescence, and is implicated in brain development. Loss of Bmi1 leads to a decreased brain size and causes progressive ataxia and epilepsy. Recently, Bmi1 was shown to control neural stem cell (NSC) renewal. However, the effect of Bmi1 loss on neural cell fate in vivo and the question whether the action of Bmi1 was intrinsic to the NSCs remained to be investigated. Here, we show that Bmi1 is expressed in the germinal zone in vivo and in NSCs as well as in progenitors proliferating in vitro, but not in differentiated cells. Loss of Bmi1 led to a decrease in proliferation in zones known to contain progenitors: the newborn cortex and the newborn and adult subventricular zone. This decrease was accentuated in vitro, where we observed a drastic reduction in NSC proliferation and renewal because of NSC-intrinsic effects of Bmi1 as shown by the means of RNA interference. Bmi1(-/-) mice also presented more astrocytes at birth, and a generalized gliosis at postnatal day 30. At both stages, colocalization of bromodeoxyuridine and GFAP demonstrated that Bmi1 loss did not prevent astrocyte precursor proliferation. Supporting these observations, Bmi1(-/-) neurospheres generate preferentially astrocytes probably attributable to a different responsiveness to environmental factors. Bmi1 is therefore necessary for NSC renewal in a cell-intrinsic mode, whereas the altered cell pattern of the Bmi1(-/-) brain shows that in vivo astrocyte precursors can proliferate in the absence of Bmi1
Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci
Hox genes are essential regulators of embryonic development. Their step-wise transcriptional activation follows their genomic topology and the various states of activation are subsequently memorized into domains of progressively overlapping gene products. We have analyzed the 3D chromatin organization of Hox clusters during their early activation in vivo, using high-resolution circular chromosome conformation capture. Initially, Hox clusters are organized as single chromatin compartments containing all genes and bivalent chromatin marks. Transcriptional activation is associated with a dynamic bi-modal 3D organization, whereby the genes switch autonomously from an inactive to an active compartment. These local 3D dynamics occur within a framework of constitutive interactions within the surrounding Topological Associated Domains, indicating that this regulation process is mostly cluster intrinsic. The step-wise progression in time is fixed at various body levels and thus can account for the chromatin architectures previously described at a later stage for different anterior to posterior levels.DOI: http://dx.doi.org/10.7554/eLife.02557.001
Mol Vis
PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65(-)/(-) mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5(-)/(-)/Rpe65(-)/(-)). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin alpha subunit (Gnat1), and cone transducin alpha subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65(-)/(-) and Cspg5(-)/(-)/Rpe65(-)/(-) mice. No retinal phenotype was detected in the late postnatal and adult Cspg5(-)/(-) mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65(-)/(-) mice, no protective effect or any involvement of Cspg5 in disease progression was identified
Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelmintic drug development candidate
Anthelmintic resistance has become a global phenomenon in gastro-intestinal nematodes of farm animals, including multi-drug resistance against the three major classes of anthelmintics. There is an urgent need for an anthelmintic with a new mode of action. The recently discovered amino-acetonitrile derivatives (AADs) offer a new class of synthetic chemicals with anthelmintic activity. The evaluation of AADs was pursued applying in vitro assays and efficacy and tolerability studies in rodents, sheep, and cattle. Amongst various suitable compounds, AAD 1566 eliminated many tested pathogenic nematode species, both at larval and adult stages, at a dose of 2.5 mg/kg bodyweight in sheep and 5.0 mg/kg bodyweight in cattle. The same doses were sufficient to cure animals infected with resistant or multi-drug-resistant nematode isolates. These findings, complemented by the good tolerability and low toxicity to mammals, suggest that AAD 1566, monepantel, would be a suitable anthelmintic drug development candidate
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Analysis of CpG methylation sites and CGI among human papillomavirus DNA genomes
<p>Abstract</p> <p>Background</p> <p>The Human Papillomavirus (HPV) genome is divided into early and late coding sequences, including 8 open reading frames (ORFs) and a regulatory region (LCR). Viral gene expression may be regulated through epigenetic mechanisms, including cytosine methylation at CpG dinucleotides. We have analyzed the distribution of CpG sites and CpG islands/clusters (CGI) among 92 different HPV genomes grouped in function of their preferential tropism: cutaneous or mucosal. We calculated the proportion of CpG sites (PCS) for each ORF and calculated the expected CpG values for each viral type.</p> <p>Results</p> <p>CpGs are underrepresented in viral genomes. We found a positive correlation between CpG observed and expected values, with mucosal high-risk (HR) virus types showing the smallest O/E ratios. The ranges of the PCS were similar for most genomic regions except <it>E4</it>, where the majority of CpGs are found within islands/clusters. At least one CGI belongs to each <it>E2/E4 </it>region. We found positive correlations between PCS for each viral ORF when compared with the others, except for the LCR against four ORFs and <it>E6 </it>against three other ORFs. The distribution of CpG islands/clusters among HPV groups is heterogeneous and mucosal HR-HPV types exhibit both lower number and shorter island sizes compared to cutaneous and mucosal Low-risk (LR) HPVs (all of them significantly different).</p> <p>Conclusions</p> <p>There is a difference between viral and cellular CpG underrepresentation. There are significant correlations between complete genome PCS and a lack of correlations between several genomic region pairs, especially those involving LCR and <it>E6</it>. <it>L2 </it>and <it>L1 </it>ORF behavior is opposite to that of oncogenes <it>E6 </it>and <it>E7</it>. The first pair possesses relatively low numbers of CpG sites clustered in CGIs while the oncogenes possess a relatively high number of CpG sites not associated to CGIs. In all HPVs, <it>E2/E4 </it>is the only region with at least one CGI and shows a higher content of CpG sites in every HPV type with an identified <it>E4</it>. The mucosal HR-HPVs show either the shortest CGI size, followed by the mucosal LR-HPVs and lastly by the cutaneous viral subgroup, and a trend to the lowest CGI number, followed by the cutaneous viral subgroup and lastly by the mucosal LR-HPVs.</p
Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function
Nr2e3 is a Genetic Modifier That Rescues Retinal Degeneration and Promotes Homeostasis in Multiple Models of Retinitis Pigmentosa
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP
- …