54 research outputs found

    Does Feedback-Related Brain Response during Reinforcement Learning Predict Socio-motivational (In-)dependence in Adolescence?

    Get PDF
    This multi-methodological study applied functional magnetic resonance imaging to investigate neural activation in a group of adolescent students (N = 88) during a probabilistic reinforcement learning task. We related patterns of emerging brain activity and individual learning rates to socio-motivational (in-)dependence manifested in four different motivation types (MTs): (1) peer-dependent MT, (2) teacher-dependent MT, (3) peer-and-teacher-dependent MT, (4) peer-and-teacher-independent MT. A multinomial regression analysis revealed that the individual learning rate predicts students’ membership to the independent MT, or the peer-and-teacher-dependent MT. Additionally, the striatum, a brain region associated with behavioral adaptation and flexibility, showed increased learning-related activation in students with motivational independence. Moreover, the prefrontal cortex, which is involved in behavioral control, was more active in students of the peer-and-teacher-dependent MT. Overall, this study offers new insights into the interplay of motivation and learning with (1) a focus on inter-individual differences in the role of peers and teachers as source of students’ individual motivation and (2) its potential neurobiological basis

    ENIGMA-anxiety working group : Rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Altres ajuts: Anxiety Disorders Research Network European College of Neuropsychopharmacology; Claude Leon Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 44541416-TRR58); EU7th Frame Work Marie Curie Actions International Staff Exchange Scheme grant 'European and South African Research Network in Anxiety Disorders' (EUSARNAD); Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, 10-000-1002); Intramural Research Training Award (IRTA) program within the National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, MH002781); National Institute of Mental Health under the Intramural Research Program (NIMH-IRP, ZIA-MH-002782); SA Medical Research Council; U.S. National Institutes of Health grants (P01 AG026572, P01 AG055367, P41 EB015922, R01 AG060610, R56 AG058854, RF1 AG051710, U54 EB020403).Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Xpert MTB/RIF Ultra and Xpert MTB/RIF assays for extrapulmonary tuberculosis and rifampicin resistance in adults.

    Get PDF
    BACKGROUND: Xpert MTB/RIF Ultra (Xpert Ultra) and Xpert MTB/RIF are World Health Organization (WHO)-recommended rapid nucleic acid amplification tests (NAATs) widely used for simultaneous detection of Mycobacterium tuberculosis complex and rifampicin resistance in sputum. To extend our previous review on extrapulmonary tuberculosis (Kohli 2018), we performed this update to inform updated WHO policy (WHO Consolidated Guidelines (Module 3) 2020). OBJECTIVES: To estimate diagnostic accuracy of Xpert Ultra and Xpert MTB/RIF for extrapulmonary tuberculosis and rifampicin resistance in adults with presumptive extrapulmonary tuberculosis. SEARCH METHODS: Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, Web of Science, Latin American Caribbean Health Sciences Literature, Scopus, ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform, the International Standard Randomized Controlled Trial Number Registry, and ProQuest, 2 August 2019 and 28 January 2020 (Xpert Ultra studies), without language restriction. SELECTION CRITERIA: Cross-sectional and cohort studies using non-respiratory specimens. Forms of extrapulmonary tuberculosis: tuberculous meningitis and pleural, lymph node, bone or joint, genitourinary, peritoneal, pericardial, disseminated tuberculosis. Reference standards were culture and a study-defined composite reference standard (tuberculosis detection); phenotypic drug susceptibility testing and line probe assays (rifampicin resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias and applicability using QUADAS-2. For tuberculosis detection, we performed separate analyses by specimen type and reference standard using the bivariate model to estimate pooled sensitivity and specificity with 95% credible intervals (CrIs). We applied a latent class meta-analysis model to three forms of extrapulmonary tuberculosis. We assessed certainty of evidence using GRADE. MAIN RESULTS: 69 studies: 67 evaluated Xpert MTB/RIF and 11 evaluated Xpert Ultra, of which nine evaluated both tests. Most studies were conducted in China, India, South Africa, and Uganda. Overall, risk of bias was low for patient selection, index test, and flow and timing domains, and low (49%) or unclear (43%) for the reference standard domain. Applicability for the patient selection domain was unclear for most studies because we were unsure of the clinical settings. Cerebrospinal fluid Xpert Ultra (6 studies) Xpert Ultra pooled sensitivity and specificity (95% CrI) against culture were 89.4% (79.1 to 95.6) (89 participants; low-certainty evidence) and 91.2% (83.2 to 95.7) (386 participants; moderate-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 168 would be Xpert Ultra-positive: of these, 79 (47%) would not have tuberculosis (false-positives) and 832 would be Xpert Ultra-negative: of these, 11 (1%) would have tuberculosis (false-negatives). Xpert MTB/RIF (30 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 71.1% (62.8 to 79.1) (571 participants; moderate-certainty evidence) and 96.9% (95.4 to 98.0) (2824 participants; high-certainty evidence). Of 1000 people where 100 have tuberculous meningitis, 99 would be Xpert MTB/RIF-positive: of these, 28 (28%) would not have tuberculosis; and 901 would be Xpert MTB/RIF-negative: of these, 29 (3%) would have tuberculosis. Pleural fluid Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity against culture were 75.0% (58.0 to 86.4) (158 participants; very low-certainty evidence) and 87.0% (63.1 to 97.9) (240 participants; very low-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 192 would be Xpert Ultra-positive: of these, 117 (61%) would not have tuberculosis; and 808 would be Xpert Ultra-negative: of these, 25 (3%) would have tuberculosis. Xpert MTB/RIF (25 studies) Xpert MTB/RIF pooled sensitivity and specificity against culture were 49.5% (39.8 to 59.9) (644 participants; low-certainty evidence) and 98.9% (97.6 to 99.7) (2421 participants; high-certainty evidence). Of 1000 people where 100 have pleural tuberculosis, 60 would be Xpert MTB/RIF-positive: of these, 10 (17%) would not have tuberculosis; and 940 would be Xpert MTB/RIF-negative: of these, 50 (5%) would have tuberculosis. Lymph node aspirate Xpert Ultra (1 study) Xpert Ultra sensitivity and specificity (95% confidence interval) against composite reference standard were 70% (51 to 85) (30 participants; very low-certainty evidence) and 100% (92 to 100) (43 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 70 would be Xpert Ultra-positive and 0 (0%) would not have tuberculosis; 930 would be Xpert Ultra-negative and 30 (3%) would have tuberculosis. Xpert MTB/RIF (4 studies) Xpert MTB/RIF pooled sensitivity and specificity against composite reference standard were 81.6% (61.9 to 93.3) (377 participants; low-certainty evidence) and 96.4% (91.3 to 98.6) (302 participants; low-certainty evidence). Of 1000 people where 100 have lymph node tuberculosis, 118 would be Xpert MTB/RIF-positive and 37 (31%) would not have tuberculosis; 882 would be Xpert MTB/RIF-negative and 19 (2%) would have tuberculosis. In lymph node aspirate, Xpert MTB/RIF pooled specificity against culture was 86.2% (78.0 to 92.3), lower than that against a composite reference standard. Using the latent class model, Xpert MTB/RIF pooled specificity was 99.5% (99.1 to 99.7), similar to that observed with a composite reference standard. Rifampicin resistance Xpert Ultra (4 studies) Xpert Ultra pooled sensitivity and specificity were 100.0% (95.1 to 100.0), (24 participants; low-certainty evidence) and 100.0% (99.0 to 100.0) (105 participants; moderate-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 100 would be Xpert Ultra-positive (resistant): of these, zero (0%) would not have rifampicin resistance; and 900 would be Xpert Ultra-negative (susceptible): of these, zero (0%) would have rifampicin resistance. Xpert MTB/RIF (19 studies) Xpert MTB/RIF pooled sensitivity and specificity were 96.5% (91.9 to 98.8) (148 participants; high-certainty evidence) and 99.1% (98.0 to 99.7) (822 participants; high-certainty evidence). Of 1000 people where 100 have rifampicin resistance, 105 would be Xpert MTB/RIF-positive (resistant): of these, 8 (8%) would not have rifampicin resistance; and 895 would be Xpert MTB/RIF-negative (susceptible): of these, 3 (0.3%) would have rifampicin resistance. AUTHORS' CONCLUSIONS: Xpert Ultra and Xpert MTB/RIF may be helpful in diagnosing extrapulmonary tuberculosis. Sensitivity varies across different extrapulmonary specimens: while for most specimens specificity is high, the tests rarely yield a positive result for people without tuberculosis. For tuberculous meningitis, Xpert Ultra had higher sensitivity and lower specificity than Xpert MTB/RIF against culture. Xpert Ultra and Xpert MTB/RIF had similar sensitivity and specificity for rifampicin resistance. Future research should acknowledge the concern associated with culture as a reference standard in paucibacillary specimens and consider ways to address this limitation

    Body perception and social touch preferences during times of grief

    No full text
    In the present original online study, we examined a largely neglected area of research in psychology: grief, its bodily sensations, and social touch as means of consolation in times of grief

    Grieftouch

    No full text
    In the present original online study, we examined a largely neglected area of research in psychology: grief, its bodily sensations, and social touch as means of consolation in times of grief

    Just Breathe: Improving LEP Outcomes through Long Interval Breathing

    No full text
    Background: Laser-evoked potentials (LEPs) constitute an objective clinical diagnostic method used to investigate the functioning of the nociceptor system, including signaling in thin peripheral nerve fibers: Aδ and C fibers. There is preliminary evidence that phase locking LEPs with the breathing cycle can improve the parameters used to evaluate LEPs. Methods: We tested a simple breathing protocol as a low-cost improvement to LEP testing of the hands. Twenty healthy participants all underwent three variants of LEP protocols: following a video-guided twelve-second breathing instruction, watching a nature video, or using the classic LEP method of focusing on the hand being stimulated. Results: The breath protocol produced significantly shorter latencies as compared with the nature or classic protocol. It was also the least prone to artifacts and was deemed most acceptable by the subjects. There was no difference between the protocols regarding LEP amplitudes. Conclusions: Using a breathing video can be a simple, low-cost improvement for LEP testing in research and clinical diagnostics
    corecore