458 research outputs found

    Digital Quantum Simulation with Rydberg Atoms

    Full text link
    We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev's toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral Particles" of "Quantum Information Processing

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Is It Rational to Assume that Infants Imitate Rationally? A Theoretical Analysis and Critique

    Get PDF
    It has been suggested that preverbal infants evaluate the efficiency of others' actions (by applying a principle of rational action) and that they imitate others' actions rationally. The present contribution presents a conceptual analysis of the claim that preverbal infants imitate rationally. It shows that this ability rests on at least three assumptions: that infants are able to perceive others' action capabilities, that infants reason about and conceptually represent their own bodies, and that infants are able to think counterfactually. It is argued that none of these three abilities is in place during infancy. Furthermore, it is shown that the idea of a principle of rational action suffers from two fallacies. As a consequence, is it suggested that it is not rational to assume that infants imitate rationally. Copyright (C) 2012 S. Karger AG, Base

    An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells

    Get PDF
    Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking

    Efficient Training of Graph-Regularized Multitask SVMs

    Full text link
    We present an optimization framework for graph-regularized multi-task SVMs based on the primal formulation of the problem. Previous approaches employ a so-called multi-task kernel (MTK) and thus are inapplicable when the numbers of training examples n is large (typically n < 20,000, even for just a few tasks). In this paper, we present a primal optimization criterion, allowing for general loss functions, and derive its dual representation. Building on the work of Hsieh et al. [1,2], we derive an algorithm for optimizing the large-margin objective and prove its convergence. Our computational experiments show a speedup of up to three orders of magnitude over LibSVM and SVMLight for several standard benchmarks as well as challenging data sets from the application domain of computational biology. Combining our optimization methodology with the COFFIN large-scale learning framework [3], we are able to train a multi-task SVM using over 1,000,000 training points stemming from 4 different tasks. An efficient C++ implementation of our algorithm is being made publicly available as a part of the SHOGUN machine learning toolbox [4]

    A quantum analogue of the first fundamental theorem of invariant theory

    Full text link
    We establish a noncommutative analogue of the first fundamental theorem of classical invariant theory. For each quantum group associated with a classical Lie algebra, we construct a noncommutative associative algebra whose underlying vector space forms a module for the quantum group and whose algebraic structure is preserved by the quantum group action. The subspace of invariants is shown to form a subalgebra, which is finitely generated. We determine generators of this subalgebra of invariants and determine their commutation relations. In each case considered, the noncommutative modules we construct are flat deformations of their classical commutative analogues. Thus by taking the limit as q1q\to 1, our results imply the first fundamental theorem of classical invariant theory, and therefore generalise them to the noncommutative case.Comment: 44 pages, 3 figure

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    The Challenges of Creativity in Software Organizations

    Get PDF
    Part 1: Creating ValueInternational audienceManaging creativity has proven to be one of the most important drivers in software development and use. The continuous changing market environment drives companies like Google, SAS Institute and LEGO to focus on creativity as an increasing necessity when competing through sustained innovations. However, creativity in the information systems (IS) environment is a challenge for most organizations that is primarily caused by not knowing how to strategize creative processes in relation to IS strategies, thus, causing companies to act ad hoc in their creative endeavors. In this paper, we address the organizational challenges of creativity in software organizations. Grounded in a previous literature review and a rigorous selection process, we identify and present a model of seven important factors for creativity in software organizations. From these factors, we identify 21 challenges that software organizations experience when embarking on creative endeavors and transfer them into a comprehensive framework. Using an interpretive research study, we further study the framework by analyzing how the challenges are integrated in 27 software organizations. Practitioners can use this study to gain a deeper understanding of creativity in their own business while researchers can use the framework to gain insight while conducting interpretive field studies of managing creativity
    corecore