126 research outputs found
Measured space environmental effects to LDEF during retrieval
On the STS-32 shuttle mission, a space flight experiment provided an understanding of the effects of the space environment on the Long Duration Exposure Facility (LDEF) from rendezvous with the shuttle until removal from the payload bay at the Orbiter Processing Facility (OPF) at KSC. The Interim Operational Contamination Monitor (IOCM) is an attached shuttle payload that has been used on two earlier flights (STS 51C and STS 28) to quantify the contamination deposited during the course of the mission. The IOCM can characterize by direct measurement, the deposition of molecular and particulate contamination during any phase of flight. In addition to these principal measurements, the IOCM actively measures the thermophysical properties of thermal control surfaces by calorimetry, the flux of the ambient atomic oxygen environment, the incident solar flux, and the absolute ambient pressure in the payload bay. The IOCM also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g. thermal cycling, atomic oxygen, and micrometeoroids and/or orbital debris, etc. One of the more salient results from the STS-32 flight suggests that the LDEF emitted a large number of particulates after berthing into the shuttle. The mission atomic oxygen fluence was also calculated. Although the fluence was low by normal standards, the Kapton passive samples exhibited the onset of erosion. Orbital debris and micrometeoroid impacts also occurred during the retrieval mission. The average perforation diameter was approximately 12.5 microns. The largest perforation diameter was measured at 65 microns
The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints
(Abridged) This is the first of a series of papers in which we derive
simultaneous constraints on cosmological parameters and X-ray scaling relations
using observations of the growth of massive, X-ray flux-selected galaxy
clusters. Our data set consists of 238 clusters drawn from the ROSAT All-Sky
Survey, and incorporates extensive follow-up observations using the Chandra
X-ray Observatory. Here we describe and implement a new statistical framework
required to self-consistently produce simultaneous constraints on cosmology and
scaling relations from such data, and present results on models of dark energy.
In spatially flat models with a constant dark energy equation of state, w, the
cluster data yield Omega_m=0.23 +- 0.04, sigma_8=0.82 +- 0.05, and w=-1.01 +-
0.20, marginalizing over conservative allowances for systematic uncertainties.
These constraints agree well and are competitive with independent data in the
form of cosmic microwave background (CMB) anisotropies, type Ia supernovae
(SNIa), cluster gas mass fractions (fgas), baryon acoustic oscillations (BAO),
galaxy redshift surveys, and cosmic shear. The combination of our data with
current CMB, SNIa, fgas, and BAO data yields Omega_m=0.27 +- 0.02, sigma_8=0.79
+- 0.03, and w=-0.96 +- 0.06 for flat, constant w models. For evolving w
models, marginalizing over transition redshifts in the range 0.05-1, we
constrain the equation of state at late and early times to be respectively
w_0=-0.88 +- 0.21 and w_et=-1.05 +0.20 -0.36. The combined data provide
constraints equivalent to a DETF FoM of 15.5. Our results highlight the power
of X-ray studies to constrain cosmology. However, the new statistical framework
we apply to this task is equally applicable to cluster studies at other
wavelengths.Comment: 16 pages, 7 figures. v4: final version (typographic corrections).
Results can be downloaded at
https://www.stanford.edu/group/xoc/papers/xlf2009.htm
L-Plastin nanobodies perturb matrix degradation, podosome formation, stability and lifetime in THP-1 macrophages
Podosomes are cellular structures acting as degradation ‘hot-spots’ in monocytic cells. They appear as dot-like structures at the ventral cell surface, enriched in F-actin and actin regulators, including gelsolin and L-plastin. Gelsolin is an ubiquitous severing and capping protein, whereas L-plastin is a leukocyte-specific actin bundling protein. The presence of the capping protein CapG in podosomes has not yet been investigated. We used an innovative approach to investigate the role of these proteins in macrophage podosomes by means of nanobodies or Camelid single domain antibodies. Nanobodies directed against distinct domains of gelsolin, L-plastin or CapG were stably expressed in macrophage-like THP-1 cells. CapG was not enriched in podosomes. Gelsolin nanobodies had no effect on podosome formation or function but proved very effective in tracing distinct gelsolin populations. One gelsolin nanobody specifically targets actin-bound gelsolin and was effectively enriched in podosomes. A gelsolin nanobody that blocks gelsolin-G-actin interaction was not enriched in podosomes demonstrating that the calcium-activated and actin-bound conformation of gelsolin is a constituent of podosomes. THP-1 cells expressing inhibitory L-plastin nanobodies were hampered in their ability to form stable podosomes. Nanobodies did not perturb Ser5 phosphorylation of L-plastin although phosphorylated L-plastin was highly enriched in podosomes. Furthermore, nanobody-induced inhibition of L-plastin function gave rise to an irregular and unstable actin turnover of podosomes, resulting in diminished degradation of the underlying matrix. Altogether these results indicate that L-plastin is indispensable for podosome formation and function in macrophages
A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?
Objectives
Clinical decision support systems (CDSS) for antimicrobial management can support clinicians to optimize antimicrobial therapy. We reviewed all original literature (qualitative and quantitative) to understand the current scope of CDSS for antimicrobial management and analyse existing methods used to evaluate and report such systems.
Method
PRISMA guidelines were followed. Medline, EMBASE, HMIC Health and Management and Global Health databases were searched from 1 January 1980 to 31 October 2015. All primary research studies describing CDSS for antimicrobial management in adults in primary or secondary care were included. For qualitative studies, thematic synthesis was performed. Quality was assessed using Integrated quality Criteria for the Review Of Multiple Study designs (ICROMS) criteria. CDSS reporting was assessed against a reporting framework for behaviour change intervention implementation.
Results
Fifty-eight original articles were included describing 38 independent CDSS. The majority of systems target antimicrobial prescribing (29/38;76%), are platforms integrated with electronic medical records (28/38;74%), and have a rules-based infrastructure providing decision support (29/38;76%). On evaluation against the intervention reporting framework, CDSS studies fail to report consideration of the non-expert, end-user workflow. They have narrow focus, such as antimicrobial selection, and use proxy outcome measures. Engagement with CDSS by clinicians was poor.
Conclusion
Greater consideration of the factors that drive non-expert decision making must be considered when designing CDSS interventions. Future work must aim to expand CDSS beyond simply selecting appropriate antimicrobials with clear and systematic reporting frameworks for CDSS interventions developed to address current gaps identified in the reporting of evidence
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage
© 2007 Botanical Society of America, Inc.The family Hydatellaceae was recently reassigned to the early-divergent angiosperm order Nymphaeales rather than the monocot order Poales. This dramatic taxonomic adjustment allows comparison with other early-divergent angiosperms, both extant and extinct. Hydatellaceae possess some monocot-like features that could represent adaptations to an aquatic habit. Ecophysiological parallels can also be drawn from fossil taxa that are known from small achene-like diaspores, as in Hydatellaceae. Reproductive units of Hydatellaceae consist of perianthlike bracts enclosing several pistils and/or stamens. In species with bisexual reproductive units, a single unit resembles an "inside-out" flower, in which stamens are surrounded by carpels that are initiated centrifugally. Furthermore, involucre development in Trithuria submersa, with delayed growth of second whorl bracts, resembles similar delayed development of the second perianth whorl in Cabomba. Several hypotheses on the homologies of reproductive units in Hydatellaceae are explored. Currently, the most plausible interpretation is that each reproductive unit represents an aggregation of reduced unisexual apetalous flowers, which are thus very different from flowers of Nymphaeales. Each pistil in Hydatellaceae is morphologically and developmentally consistent with a solitary ascidiate carpel. However, ascidiate carpel development, consistent with placement in Nymphaeales, is closely similar to pseudomonomerous pistil development as in Poaes.Paula J. Rudall, Dmitry D. Sokoloff, Margarita V. Remizowa, John G. Conran, Jerrold I. Davis, Terry D. Macfarlane and Dennis W. Stevenso
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
- …