845 research outputs found

    Rates and Progenitors of Type Ia Supernovae

    Full text link
    The remarkable uniformity of Type Ia supernovae (SNe Ia) has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, SNe Ia exhibit intrinsic variation in both their spectra and observed brightness. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in SNe Ia. Toward this end, the Nearby Supernova Factory (SNfactory) has been designed to discover hundreds of SNe Ia in a systematic and automated fashion and study them in detail. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of SNe Ia. This dissertation presents a new method for analyzing the true sensitivity of a multi-epoch supernova search and finds a SN Ia rate from z0.01z\sim0.01--0.1 of rV=4.26(+1.391.93)(+0.100.10)r_V = 4.26 (+1.39 -1.93) (+0.10 - 0.10) SNe Ia/yr/Mpc3^3 from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of SNe Ia.Comment: Ph.D. Dissertation, Dept. of Physics, UC Berkeley, 2004. You may find a nice version with full-resolution figures at either http://supernova.lbl.gov/~wwoodvas/Papers/ or http://www.cfa.harvard.edu/~wmwood-vasey/Papers

    Dark energy FRW cosmology - dynamical system reconstruction

    Full text link
    We develop a simple method of dark energy reconstruction using a geometrical form of the luminosity-distance relation. In this method the FRW dynamical system with dark energy is reconstructed instead of the equation of state parameter. We give several examples which illustrate the usefulness of our method in fitting the redshift transition from the decelerating to accelerating phase as the value of the Hubble function at the transition.Comment: Talk presented at Spanish Relativity Meeting 2007, Puerto de la Cruz, Tenerife, Spain, 10-14 September 200

    Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History

    Full text link
    We present new pre-maximum and late-time optical photometry of the Type Ia/IIn supernova 2002ic. These observations are combined with the published V-band magnitudes of Hamuy et al. (2003) and the VLT spectrophotometry of Wang et al. (2004) to construct the most extensive light curve to date of this unusual supernova. The observed flux at late time is significantly higher relative to the flux at maximum than that of any other observed Type Ia supernova and continues to fade very slowly a year after explosion. Our analysis of the light curve suggests that a non-Type Ia supernova component becomes prominent 20\sim20 days after explosion. Modeling of the non-Type Ia supernova component as heating from the shock interaction of the supernova ejecta with pre-existing circumstellar material suggests the presence of a 1.71015\sim1.7 10^{15} cm gap or trough between the progenitor system and the surrounding circumstellar material. This gap could be due to significantly lower mass-loss 15(vw/10km/s)1\sim15 (v_w/10 km/s)^{-1} years prior to explosion or evacuation of the circumstellar material by a low-density fast wind. The latter is consistent with observed properties of proto-planetary nebulae and with models of white-dwarf + asymptotic giant branch star progenitor systems with the asymptotic giant branch star in the proto-planetary nebula phase.Comment: accepted for publication in Ap

    The Three Faces of Omega_m: Testing Gravity with Low and High Redshift SN Ia Surveys

    Full text link
    Peculiar velocities of galaxies hosting Type Ia supernovae generate a significant systematic effect in deriving the dark energy equation of state w, at level of a few percent. Here we illustrate how the peculiar velocity effect in SN Ia data can be turned from a 'systematic' into a probe of cosmological parameters. We assume a flat Lambda-Cold Dark Matter model (w=-1) and use low and high redshift SN Ia data to derive simultaneously three distinct estimates of the matter density Omega_m which appear in the problem: from the geometry, from the dynamics and from the shape of the matter power spectrum. We find that each of the three Omega_m's agree with the canonical value Omega_m=0.25 to within 1 sigma, for reasonably assumed fluctuation amplitude and Hubble parameter. This is consistent with the standard cosmological scenario for both the geometry and the growth of structure. For fixed Omega_m = 0.25 for all three Omega_m's, we constrain gamma = 0.72 +/- 0.21 in the growth factor Omega_m(z)^gamma, so we cannot currently distinguish between standard Einstein gravity and predictions from some modified gravity models. Future surveys of thousands of SN Ia, or inclusion of peculiar velocity data, could significantly improve the above tests.Comment: accepted for publication in MNRAS (Letters), 5 pages, 4 figures. Small changes to improve the text and the figures. Some further discussion, 1 equation and 1 reference adde

    SweetSpot: Near-Infrared Observations of Thirteen Type Ia Supernovae from a New NOAO Survey Probing the Nearby Smooth Hubble Flow

    Full text link
    We present 13 Type Ia supernovae (SNe Ia) observed in the restframe near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. With only 1-3 points per light curve and a prior on the time of maximum from the spectrum used to type the object we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in H-band even with limited data. Our sample includes two SNe Ia at z ~ 0.09, which represent the most distant restframe NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for "SweetSpot" - a three-year NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ~ 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.Comment: 36 pages, 8 figures, Submitted to Ap

    Novae as a Mechanism for Producing Cavities around the Progenitors of SN 2002ic and Other SNe Ia

    Get PDF
    We propose that a nova shell ejected from a recurrent nova progenitor system created the evacuated region around the explosion center of SN 2002ic. In this picture, periodic shell ejections due to nova explosions on a white dwarf sweep up the slow wind from the binary companion, creating density variations and instabilities that lead to structure in the circumstellar medium (CSM). Our model naturally explains the observed gap between the supernova explosion center and the CSM in SN 2002ic, accounts for the density variations observed in the CSM, and resolves the coincidence problem of the timing of the explosion of SN 2002ic with respect to the apparent cessation of mass-loss in the progenitor system. We also consider such nova outburst sweeping as a generic feature of Type Ia supernovae with recurrent nova progenitors.Comment: Accepted to ApJL. 11 pages, 1 tabl

    Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared

    Full text link
    We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.Comment: 24 pages, 15 figures, 4 tables. Accepted for publication in ApJ. Corrected typo, added references, minor edit

    Gamma-ray burst contributions to constraining the evolution of dark energy

    Full text link
    We explore the gamma-ray bursts' (GRBs') contributions in constraining the dark energy equation of state (EOS) at high (1.8<z<71.8 < z < 7) and at middle redshifts (0.5<z<1.80.5 < z < 1.8) and estimate how many GRBs are needed to get substantial constraints at high redshifts. We estimate the constraints with mock GRBs and mock type Ia supernovae (SNe Ia) for comparisons. When constraining the dark energy EOS in a certain redshift range, we allow the dark energy EOS parameter to vary only in that redshift bin and fix EOS parameters elsewhere to -1. We find that it is difficult to constrain the dark energy EOS beyond the redshifts of SNe Ia with GRBs unless some new luminosity relations for GRBs with smaller scatters are discovered. However, at middle redshifts, GRBs have comparable contributions with SNe Ia in constraining the dark energy EOS.Comment: 3 pages, 5 figures. Published in Astronomy and Astrophysics. Corrected referenc
    corecore