4 research outputs found

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Oncogenic Mutants of RON and MET Receptor Tyrosine Kinases Cause Activation of the β-Catenin Pathway

    No full text
    β-Catenin is an oncogenic protein involved in regulation of cell-cell adhesion and gene expression. Accumulation of cellular β-catenin occurs in many types of human cancers. Four mechanisms are known to cause increases in β-catenin: mutations of β-catenin, adenomatous polyposis coli, or axin genes and activation of Wnt signaling. We report a new cause of β-catenin accumulation involving oncogenic mutants of RON and MET receptor tyrosine kinases (RTKs). Cells transfected with oncogenic RON or MET were characterized by β-catenin tyrosine phosphorylation and accumulation; constitutive activation of a Tcf transcriptional factor; and increased levels of β-catenin/Tcf target oncogene proteins c-myc and cyclin D1. Interference with the β-catenin pathway reduced the transforming potential of mutated RON and MET. Activation of β-catenin by oncogenic RON and MET constitutes a new pathway, which might lead to cell transformation by these and other mutant growth factor RTKs

    Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases

    No full text
    corecore