150 research outputs found

    Gut microbiome westernization in Hmong and Karen refugees and immigrants in the United States

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2018. Major: Biomedical Informatics and Computational Biology. Advisor: Dan Knights. 1 computer file (PDF); x, 132 pages.Many United States immigrant populations develop metabolic diseases post-immigration, but the causes are not well understood. Although the microbiome plays a role in metabolic disease, there have been no studies measuring the effects of U.S. immigration on the gut microbiome. We collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living in Thailand and the U.S., including first- and second-generation immigrants and 19 Karen individuals sampled before and after immigration, as well as from 36 U.S.-born Caucasian individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that migration from a non-Western country to the U.S. is associated with immediate loss of gut microbiome diversity and function, with U.S.-associated strains and functions displacing native strains and functions. These effects increase with duration of U.S. residence, and are compounded by obesity and across generations

    Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome

    Get PDF
    Live bacteria (such as probiotics) have long been used to modulate gut microbiota and human physiology, but their colonization is mostly transient. Conceptual understanding of the ecological principles as they apply to exogenously introduced microbes in gut ecosystems is lacking. We find that, when orally administered to humans, Bifidobacterium longum AH1206 stably persists in the gut of 30% of individuals for at least 6 months without causing gastrointestinal symptoms or impacting the composition of the resident gut microbiota. AH1206 engraftment was associated with low abundance of resident B. longum and underrepresentation of specific carbohydrate utilization genes in the pre-treatment microbiome. Thus, phylogenetic limiting and resource availability are two factors that control the niche opportunity for AH1206 colonization. These findings suggest that bacterial species and functional genes absent in the gut microbiome of individual humans can be reestablished, providing opportunities for precise and personalized microbiome reconstitution

    Stable Engraftment of \u3ci\u3eBifidobacterium longum\u3c/i\u3e AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome

    Get PDF
    Live bacteria (such as probiotics) have long been used to modulate gut microbiota and human physiology, but their colonization is mostly transient. Conceptual understanding of the ecological principles as they apply to exogenously introduced microbes in gut ecosystems is lacking. We find that, when orally administered to humans, Bifidobacterium longum AH1206 stably persists in the gut of 30% of individuals for at least 6 months without causing gastrointestinal symptoms or impacting the composition of the resident gut microbiota. AH1206 engraftment was associated with low abundance of resident B. longum and underrepresentation of specific carbohydrate utilization genes in the pre-treatment microbiome. Thus, phylogenetic limiting and resource availability are two factors that control the niche opportunity for AH1206 colonization. These findings suggest that bacterial species and functional genes absent in the gut microbiome of individual humans can be reestablished, providing opportunities for precise and personalized microbiome reconstitution

    Stable Engraftment of \u3ci\u3eBifidobacterium longum\u3c/i\u3e AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome

    Get PDF
    Live bacteria (such as probiotics) have long been used to modulate gut microbiota and human physiology, but their colonization is mostly transient. Conceptual understanding of the ecological principles as they apply to exogenously introduced microbes in gut ecosystems is lacking. We find that, when orally administered to humans, Bifidobacterium longum AH1206 stably persists in the gut of 30% of individuals for at least 6 months without causing gastrointestinal symptoms or impacting the composition of the resident gut microbiota. AH1206 engraftment was associated with low abundance of resident B. longum and underrepresentation of specific carbohydrate utilization genes in the pre-treatment microbiome. Thus, phylogenetic limiting and resource availability are two factors that control the niche opportunity for AH1206 colonization. These findings suggest that bacterial species and functional genes absent in the gut microbiome of individual humans can be reestablished, providing opportunities for precise and personalized microbiome reconstitution

    Complex host genetics influence the microbiome in inflammatory bowel disease

    Get PDF
    Background: Human genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases. One of the strongest associations in each case is inflammatory bowel disease (IBD), but disease risk cannot be explained fully by either factor individually. Recent findings point to interactions between host genetics and microbial exposures as important contributors to disease risk in IBD. These include evidence of the partial heritability of the gut microbiota and the conferral of gut mucosal inflammation by microbiome transplant even when the dysbiosis was initially genetically derived. Although there have been several tests for association of individual genetic loci with bacterial taxa, there has been no direct comparison of complex genome-microbiome associations in large cohorts of patients with an immunity-related disease. Methods: We obtained 16S ribosomal RNA (rRNA) gene sequences from intestinal biopsies as well as host genotype via Immunochip in three independent cohorts totaling 474 individuals. We tested for correlation between relative abundance of bacterial taxa and number of minor alleles at known IBD risk loci, including fine mapping of multiple risk alleles in the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene exon. We identified host polymorphisms whose associations with bacterial taxa were conserved across two or more cohorts, and we tested related genes for enrichment of host functional pathways. Results: We identified and confirmed in two cohorts a significant association between NOD2 risk allele count and increased relative abundance of Enterobacteriaceae, with directionality of the effect conserved in the third cohort. Forty-eight additional IBD-related SNPs have directionality of their associations with bacterial taxa significantly conserved across two or three cohorts, implicating genes enriched for regulation of innate immune response, the JAK-STAT cascade, and other immunity-related pathways. Conclusions: These results suggest complex interactions between genetically altered host functional pathways and the structure of the microbiome. Our findings demonstrate the ability to uncover novel associations from paired genome-microbiome data, and they suggest a complex link between host genetics and microbial dysbiosis in subjects with IBD across independent cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0107-1) contains supplementary material, which is available to authorized users

    Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring

    Get PDF
    Advances in nucleic acid sequencing technology have enabled expansion of our ability to profile microbial diversity. These large datasets of taxonomic and functional diversity are key to better understanding microbial ecology. Machine learning has proven to be a useful approach for analyzing microbial community data and making predictions about outcomes including human and environmental health. Machine learning applied to microbial community profiles has been used to predict disease states in human health, environmental quality and presence of contamination in the environment, and as trace evidence in forensics. Machine learning has appeal as a powerful tool that can provide deep insights into microbial communities and identify patterns in microbial community data. However, often machine learning models can be used as black boxes to predict a specific outcome, with little understanding of how the models arrived at predictions. Complex machine learning algorithms often may value higher accuracy and performance at the sacrifice of interpretability. In order to leverage machine learning into more translational research related to the microbiome and strengthen our ability to extract meaningful biological information, it is important for models to be interpretable. Here we review current trends in machine learning applications in microbial ecology as well as some of the important challenges and opportunities for more broad application of machine learning to understanding microbial communities

    Immunological resilience and biodiversity for prevention of allergic diseases and asthma

    Get PDF
    Increase of allergic conditions has occurred at the same pace with the Great Acceleration, which stands for the rapid growth rate of human activities upon earth from 1950s. Changes of environment and lifestyle along with escalating urbanization are acknowledged as the main underlying causes. Secondary (tertiary) prevention for better disease control has advanced considerably with innovations for oral immunotherapy and effective treatment of inflammation with corticosteroids, calcineurin inhibitors, and biological medications. Patients are less disabled than before. However, primary prevention has remained a dilemma. Factors predicting allergy and asthma risk have proven complex: Risk factors increase the risk, while protective factors counteract them. Interaction of human body with environmental biodiversity with micro-organisms and biogenic compounds as well as the central role of epigenetic adaptation in immune homeostasis have given new insight. Allergic diseases are good indicators of the twisted relation to environment. In various non-communicable diseases, the protective mode of the immune system indicates low-grade inflammation without apparent cause. Giving microbes, pro- and prebiotics, has shown some promise in prevention and treatment. The real-world public health programme in Finland (2008-2018) emphasized nature relatedness and protective factors for immunological resilience, instead of avoidance. The nationwide action mitigated the allergy burden, but in the lack of controls, primary preventive effect remains to be proven. The first results of controlled biodiversity interventions are promising. In the fast urbanizing world, new approaches are called for allergy prevention, which also has a major cost saving potential.Peer reviewe

    El desafĂ­o de la administraciĂłn adecuada de antimicrobianos en pediatrĂ­a.

    Get PDF
    Background: Antibiotics are among the drugs most commonly prescribed to children in hospitals and communities. Unfortunately, a great number of these prescriptions are unnecessary or inappropriate. Antibiotic abuse and misuse have several negative consequences, including drug-related adverse events, the emergence of multidrug resistant bacterial pathogens, the development of Clostridium difficile infection, the negative impact on microbiota, and undertreatment risks. In this paper, the principle of and strategies for paediatric antimicrobial stewardship (AS) programs, the effects of AS interventions and the common barriers to development and implementation of AS programs are discussed. Discussion: Over the last few years, there have been significant shortages in the development and availability of new antibiotics; therefore, the implementation of strategies to preserve the activity of existing antimicrobial agents has become an urgent public health priority. AS is one such approach. The need for formal AS programs in paediatrics was officially recognized only recently, considering the widespread use of antibiotics in children and the different antimicrobial resistance patterns that these subjects exhibit in comparison to adult and elderly patients. However, not all problems related to the implementation of AS programs among paediatric patients are solved. The most important remaining problems involve educating paediatricians, creating a multidisciplinary interprofessional AS team able to prepare guidelines, monitoring antibiotic prescriptions and defining corrective measures, and the availability of administrative consensuses with adequate financial support. Additionally, the problem of optimizing the duration of AS programs remains unsolved. Further studies are needed to solve the above mentioned problems. Conclusions: In paediatric patients, as in adults, the successful implementation of AS strategies has had a significant impact on reducing targeted- and nontargeted-antimicrobial use by improving the quality of care for hospitalized patients and preventing the emergence of resistance. Considering that rationalization of antibiotic misuse and abuse is the basis for reducing emergence of bacterial resistance and several clinical problems, all efforts must be made to develop multidisciplinary paediatric AS programs in hospital and community settings
    • 

    corecore