2,467 research outputs found

    Regulation of surface architecture by symbiotic bacteria mediates host colonization

    Get PDF
    Microbes occupy countless ecological niches in nature. Sometimes these environments may be on or within another organism, as is the case in both microbial infections and symbiosis of mammals. Unlike pathogens that establish opportunistic infections, hundreds of human commensal bacterial species establish a lifelong cohabitation with their hosts. Although many virulence factors of infectious bacteria have been described, the molecular mechanisms used during beneficial host–symbiont colonization remain almost entirely unknown. The novel identification of multiple surface polysaccharides in the important human symbiont Bacteroides fragilis raised the critical question of how these molecules contribute to commensalism. To understand the function of the bacterial capsule during symbiotic colonization of mammals, we generated B. fragilis strains deleted in the global regulator of polysaccharide expression and isolated mutants with defects in capsule expression. Surprisingly, attempts to completely eliminate capsule production are not tolerated by the microorganism, which displays growth deficits and subsequent reversion to express capsular polysaccharides. We identify an alternative pathway by which B. fragilis is able to reestablish capsule production and modulate expression of surface structures. Most importantly, mutants expressing single, defined surface polysaccharides are defective for intestinal colonization compared with bacteria expressing a complete polysaccharide repertoire. Restoring the expression of multiple capsular polysaccharides rescues the inability of mutants to compete for commensalism. These findings suggest a model whereby display of multiple capsular polysaccharides provides essential functions for bacterial colonization during host–symbiont mutualism

    Chemical Impacts of the Microbiome Across Scales Reveal Novel Conjugated Bile Acids

    Get PDF
    A mosaic of cross-phyla chemical interactions occurs between all metazoans and their microbiomes. In humans, the gut harbors the heaviest microbial load, but many organs, particularly those with a mucosal surface, associate with highly adapted and evolved microbial consortia. The microbial residents within these organ systems are increasingly well characterized, yielding a good understanding of human microbiome composition, but we have yet to elucidate the full chemical impact the microbiome exerts on an animal and the breadth of the chemical diversity it contributes. A number of molecular families are known to be shaped by the microbiome including short-chain fatty acids, indoles, aromatic amino acid metabolites, complex polysaccharides, and host lipids; such as sphingolipids and bile acids. These metabolites profoundly affect host physiology and are being explored for their roles in both health and disease. Considering the diversity of the human microbiome, numbering over 40,000 operational taxonomic units, a plethora of molecular diversity remains to be discovered. Here, we use unique mass spectrometry informatics approaches and data mapping onto a murine 3D-model to provide an untargeted assessment of the chemical diversity between germ-free (GF) and colonized mice (specific-pathogen free, SPF), and report the finding of novel bile acids produced by the microbiome in both mice and humans that have evaded characterization despite 170 years of research on bile acid chemistry

    A microbial symbiosis factor prevents intestinal inflammatory disease

    Get PDF
    Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles

    Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring

    Get PDF
    Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins are first synthesized in the bacterial cytoplasm and then transported across the cytoplasmic membrane. Cleavage of the N-terminal signal peptide of the cytoplasmic surface protein P1 precursor generates the extracellular P2 species, which is the substrate for the cell wall anchoring reaction. Sortase, a membrane-anchored transpeptidase, cleaves P2 between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine and the amino group of cell wall cross-bridges. We have used metabolic labeling of staphylococcal cultures with [32P]phosphoric acid to reveal a P3 intermediate. The 32P-label of immunoprecipitated surface protein is removed by treatment with lysostaphin, a glycyl-glycine endopeptidase that separates the cell wall anchor structure. Furthermore, the appearance of P3 is prevented in the absence of sortase or by the inhibition of cell wall synthesis. 32P-Labeled cell wall anchor species bind to nisin, an antibiotic that is known to form a complex with lipid II. Thus, it appears that the P3 intermediate represents surface protein linked to the lipid II peptidoglycan precursor. The data support a model whereby lipid II-linked polypeptides are incorporated into the growing peptidoglycan via the transpeptidation and transglycosylation reactions of cell wall synthesis, generating mature cell wall-linked surface protein

    Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus: sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly3 substrates

    Get PDF
    Staphylococcus aureus sortase anchors surface proteins to the cell wall envelope by cleaving polypeptides at the LPXTG motif. Surface proteins are linked to the peptidoglycan by an amide bond between the C-terminal carboxyl and the amino group of the pentaglycine cross-bridge. We find that purified recombinant sortase hydrolyzed peptides bearing an LPXTG motif at the peptide bond between threonine and glycine. In the presence of NH2-Gly3, sortase catalyzed exclusively a transpeptidation reaction, linking the carboxyl group of threonine to the amino group of NH2-Gly3. In the presence of amino group donors the rate of sortase mediated cleavage at the LPXTG motif was increased. Hydrolysis and transpeptidation required the sulfhydryl of cysteine 184, suggesting that sortase catalyzed the transpeptidation reaction of surface protein anchoring via the formation of a thioester acyl-enzyme intermediate

    Life History Analysis And Individual Differences In Humans: A Test Of The Application Of An R/k Analysis

    Get PDF
    A number of psychologists have begun to apply principles from evolutionary biology to their domains in an attempt to provide an integrated model of human behaviour. One such application, a theory based on the r/K continuum of reproductive strategies, postulates that a single heritable reproductive dimension underlies a broad range of individual differences in life histories, physiological functioning, and social behaviour (Rushton, 1985). The two experiments reported here provide a test of this theory. Experiment 1 was conducted to determine if such a reproductive dimension exists and the extent of its heritability. Numerous reproductive and other variables from a sample of 7620 twins were subjected to principal component analyses. The obtained solutions for both male and female twins revealed factors which resembled the proposed dimension. Comparisons of aggregated standard scores for monozygotic twin pairs and same-sexed dizygotic pairs indicated that the dimension was moderately heritable. The second experiment replicated and extended the first study using a broader range of variables from a sample of 250 university undergraduates. In both experiments, strongest support for the theory was found for the physiological and sexual-reproductive variables, with the findings for personality variables being less supportive. The results were generally interpreted as providing initial support for the application of r/K theory to humans

    Breathe easy: microbes protect from allergies

    Get PDF
    Changes in gut microbial composition have been linked to inflammatory bowel disease, obesity and allergies in humans. A new study shows that pattern recognition of commensal bacteria by B cells reduces allergic inflammation in mice, adding to the mounting evidence for the 'hygiene hypothesis' (pages 538–546)

    A Pathobiont of the Microbiota Balances Host Colonization and Intestinal Inflammation

    Get PDF
    The gastrointestinal tract harbors a diverse microbiota that has coevolved with mammalian hosts. Though most associations are symbiotic or commensal, some resident bacteria (termed pathobionts) have the potential to cause disease. Bacterial type VI secretion systems (T6SSs) are one mechanism for forging host-microbial interactions. Here we reveal a protective role for the T6SS of Helicobacter hepaticus, a Gram-negative bacterium of the intestinal microbiota. H. hepaticus mutants with a defective T6SS display increased numbers within intestinal epithelial cells (IECs) and during intestinal colonization. Remarkably, the T6SS directs an anti-inflammatory gene expression profile in IECs, and CD4+ T cells from mice colonized with T6SS mutants produce increased interleukin-17 in response to IECs presenting H. hepaticus antigens. Thus, the H. hepaticus T6SS limits colonization and intestinal inflammation, promoting a balanced relationship with the host. We propose that disruption of such balances contributes to human disorders such as inflammatory bowel disease and colon cancer
    • …
    corecore