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Introduction 

Immigrants to the U.S. arrive relatively free of endemic chronic diseases, but their health 

eventually deteriorates over time to match that of their American counterparts. This 

“healthy immigrant effect” (Kennedy et al., 2006) unfolds at different rates and with 

different severities, as some groups develop disproportionately higher risks of disease 

than others (Antecol and Bedard, 2006). Given that immigrants are the fastest growing 

group in the U.S. and are projected to make up 20% of the population by 2050 (Passel 

and Cohn, 2008), prevention of obesity and related diseases in this population will have 

large implications on public health and the U.S. economic health burden. Behavioral and 

social risk factors (Bates et al., 2008; Cairney and Ostbye, 1999; Goel et al., 2004; 

Kaplan et al., 2004; Lauderdale and Rathouz, 2000; McTigue et al., 2002; Walker et al., 

2008), such as sedentary lifestyles, western diet, and low socioeconomic status, have 

been well-described and are important considerations for preventing and managing 

obesity. Unfortunately, the etiology of obesity is further complicated by host-specific 

factors such as genetics and more recently, the gut microbiome (Ley et al., 2005, 2006; 

Schwiertz et al., 2010; Turnbaugh and Gordon, 2009; Turnbaugh et al., 2006). The gut 

microbiome plays a critical role in host metabolism and because it is largely shaped by 

the external environment, varies based on an individual’s geographical origin 

(Yatsunenko et al., 2012). New and severe environmental exposures can lead to 

disruptions in gut homoestasis (David et al., 2014; Dethlefsen and Relman, 2011; 

Turnbaugh et al., 2009a), which have been associated with a variety of diseases, 

including obesity. Thus, there is a critical need to determine how the gut microbiome 

adapts to the permanent and often severe environmental changes characteristic of 

immigration between under-developed and western countries. In the absence of such 

knowledge, the strategies used to combat obesity and related diseases among U.S. 

immigrant and minority populations will only be partially effective. 
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Background and Literature Review 

The U.S. is home to a growing immigrant population whose health is declining over time 
An estimated 40 million immigrants (foreign-born individuals) reside in the U.S. (13% of 

the population as of 2010), representing the fastest growing segment of the population 

(Goel et al., 2004). Immigrants are projected to make up 20% of the population by 2050 

(Passel and Cohn, 2008). Minnesota is home to the highest number of refugees per capita 

in the U.S., and is currently expecting the largest wave of refugees in the last decade 

(Koumpilova, 2015). The Hmong, a minority ethnic group from China and Southeast 

Asia, make up the largest refugee group in Minnesota (22,033 total refugees as of 2014) 

(Minnesota Department of Health), and also form the largest centralized Hmong 

community in the U.S. (70,000 total individuals) (Pfeifer and Thao, 2013). Karen 

refugees from Burma (Myanmar) have been arriving in large numbers in recent years 

(Minnesota Department of Health), also from a similar region in Asia. Past work reveals 

that length of residence in the U.S. increases the risk of obesity, with some groups 

experiencing up to a four-fold increase in obesity risk after 15 years (Bates et al., 2008; 

Cairney and Ostbye, 1999; Goel et al., 2004; Kaplan et al., 2004; Lauderdale and 

Rathouz, 2000; Walker et al., 2008). This “healthy immigrant effect” has been well-

documented in western countries (Antecol and Bedard, 2006), yet occurs at varying 

degrees among different groups (e.g. Mexican-born females are at highest risk of 

developing obesity (Barcenas et al., 2007)). In Minnesota, increasing levels of dietary 

acculturation has been correlated with increasing BMI among Hmong (Mulasi-Pokhriyal 

et al., 2012; Smith and Franzen-Castle, 2012), and the prevalence of overweight and 

obesity is highest among Hmong compared to other Asian ethnic groups (Arcan et al., 

2014; Franzen and Smith, 2009; Himes et al., 1992; Mulasi-Pokhriyal et al., 2012). 

Limited data exists for the more recently arrived Karen, yet these trends suggest that this 

group will soon be at risk. With the recent crises in the middle east, the U.S. is expected 

to increase the number of accepted refugees by 25% over the next two years (Morello, 

2016). There is a need to gain a basic understanding of how these migrations impact 
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human health in order to ensure that these populations transition to life in the U.S. as 

seamlessly as possible. 

 

Central role of the human microbiome in human health 

The human microbiome, the trillions of microorganisms that live inside and on our 

bodies, is an important contributor to human health. These microbial communities aid in 

immune system development, protection against pathogenic infections, and host 

metabolism. Furthermore, distinct gut microbiome compositions have been associated 

with various disease states, such as Crohn’s disease (Gevers et al., 2014), cancers (Wang 

et al., 2012), diabetes (Qin et al., 2012), allergy and asthma (Abrahamsson et al., 2012; 

Atarashi et al., 2013; Bisgaard et al., 2011), and obesity (Ley et al., 2006; Turnbaugh and 

Gordon, 2009; Turnbaugh et al., 2006). There is enormous potential for the gut 

microbiome to serve as a biomarker for the diagnostics and prevention of diseases, and to 

also serve as a target for prebiotic and probiotic therapeutics in combating disease. 

 

Western diet induces pronounced deleterious effects on the gut microbiome 

With a critical role in host metabolism, the gut microbiome composition is heavily 

influenced by an individual’s long-term diet (Hildebrandt et al., 2009; Wu et al., 2011), 

yet can also quickly respond to drastic dietary changes (David et al., 2014; Turnbaugh et 

al., 2009a). African Americans and rural South Africans who exchanged diets for two 

weeks also exchanged their respective cancer risks, as indicated by mucosal biomarkers 

and microbiome shifts (O’Keefe et al., 2015). Aside from being animal-based, high-fat, 

and low-fiber, the western diet harbors other food components that have recently been 

under scrutiny, such as artificial sweeteners inducing glucose intolerance (Suez et al., 

2014) and dietary emulsifiers inducing metabolic syndrome (Chassaing et al., 2015). 

Although diet has been shown to be a major determinant of gut microbiome composition, 

it also exhibits resilience in some states, and therefore may show limited response to diet 

alone (Smith et al., 2013). Perhaps more importantly for immigrants and their future 

generations, diet modifications are unable to recover microbes that have been lost over 

several generations (Sonnenburg et al., 2016). 
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Loss of co-evolved microbes contributes to rise in chronic diseases 

Although our study captures diet acculturation as a western exposure driving risk of 

obesity, we also explore evidence of how westernization contributes to the “disappearing 

microbiota” hypothesis (Blaser and Falkow, 2009), which suggests that the loss of 

indigenous organisms that have coevolved with humans may be contributing to the rise in 

chronic diseases. This hypothesis is supported by several studies, which found that 

greater diversity and novel taxa are present in non-western versus western human gut 

microbiomes (Clemente et al., 2015; Obregon-Tito et al., 2015; Yatsunenko et al., 2012). 

Furthermore, there may be a strong health-promoting relationship between a specific set 

of microbes and the respective population that harbors it. Kodaman et al. found that two 

clusters of Helicobacter pylori strains were found among African and Amerindian 

populations, and were benign when strain ancestry and human ancestry matched, but 

deleterious for gastric cancer risk when an individual with African ancestry harbored an 

Amerindian H. pylori strain and vice-versa (Kodaman et al., 2014). 

 

Other western exposures contribute to disruption of gut homeostasis 

Exposure to broad-spectrum antibiotics, commonly used in western medicine, can lead to 

imbalances in the gut microbiome. Evidence for antibiotics-induced obesity is primarily 

characterized by shifts in functional capability, or more specifically, long-lasting 

metabolic shifts that result from incomplete recovery back to the normal trajectory. 

Recent work found that mice given sub-therapeutic levels of antibiotics after weaning 

exhibited increased adiposity, large taxonomic changes in their gut microbiomes, and 

increased levels of short-chain fatty acids (SFCAs) as well as counts of bacterial genes 

involved in SFCA metabolism (Cho et al., 2012a). These mice also had lower caloric 

output in their faecal pellets despite dietary intake similar to controls, suggesting their gut 

microbiota developed the ability to extract increased energy from indigestible 

components (Cho et al., 2012a). Furthermore, use of multiple courses of broad-spectrum 

antibiotics can perturb the gut microbiome such that complete recovery is unattainable 

(Dethlefsen and Relman, 2011). 
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Gut microbiome mediates obesity 

Obesity risk can be attributed partially to host genetics, but recently has been found to be 

considerably associated with differences in the gut microbiome (Ley et al., 2005, 2006; 

Schwiertz et al., 2010; Turnbaugh and Gordon, 2009; Turnbaugh et al., 2006). The gut 

microbiome is much more dynamic than the human genome; it exhibits substantial inter-

individual variability (unrelated individuals share only 30% of their gut microbiomes as 

opposed to 99.9% of their genomes), and intra-individual variability (an individual’s gut 

microbiome changes over days, weeks, and months (Bäckhed et al., 2005; Faith et al., 

2013)). Gut microbiomes transplanted from lean or obese individuals into mice directly 

induces weight loss or gain, respectively, implicating the gut microbiome as a causal 

factor in obesity (Ridaura et al., 2013; Smith et al., 2013; Turnbaugh et al., 2006). 

Additionally, weight loss is dependent on the initial gut microbiome composition, and 

stability of an individual’s weight is directly associated with the stability of his or her gut 

microbiome (Faith et al., 2013; Santacruz et al., 2009). 

 

Effects of fiber on gut health and obesity 

Although the gut microbiome may serve as an important biomarker for obesity, it also 

holds enormous potential for modifying host metabolism. Consumption of dietary fiber is 

important for promoting gut microbial diversity; it is fermented into beneficial short-

chain fatty acids, and as a result is important for combating various gut conditions 

associated with obesity, such as increased gut permeability and low-grade inflammation 

(Cani et al., 2009a; Maachi et al., 2004). Studies show that gut microbiota fermentation 

of dietary fiber promotes satiety (Cani et al., 2009b; Parnell and Reimer, 2012) and is 

involved in a variety of signaling pathways that maintain glucose and energy homeostasis 

(De Vadder et al., 2014). It is well established among epidemiological studies that 

consumption of dietary fiber is important for weight loss (Howarth et al., 2001; Liu et al., 

2003; Slavin, 2005), and that non-Western populations with fiber-rich diets have lower 

incidences of obesity (Cerqueira et al., 1979; Lindeberg and Lundh, 1993). 

Characterizing the effect of dietary fiber consumption in preserving or restoring native 

gut microbiomes among immigrant populations has significant implications for both the 
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prevention and treatment of obesity, and subsequent development of obesity-related 

diseases, in these at-risk populations. 

 

Study objectives and overall approach 

The long-term goal of the research contained in this thesis is to identify key factors that 

support a healthy transition to life in the U.S., so that improved strategies can prevent the 

development of endemic chronic diseases among new Americans. The main objective is 

to understand the role of the gut microbiome in mediating increased risk of obesity within 

Hmong and Karen refugees and immigrants as they adapt to western diet and 

environment. We hypothesize that immigration and subsequent exposure to 

westernization induces dramatic and permanent shifts in the gut microbiome directly 

associated with increased risk of obesity. The rationale for the main human study 

described in this thesis is that its successful completion would provide a strong 

conceptual framework for the implementation of a comprehensive dietary or probiotic 

intervention targeted at multiple groups.  

 

Specific Aim 1: Determine changes in the gut microbiome attributed to the length of 

residence in the U.S. and obesity risk.   

Hypothesis: Obesity risk is characterized by low diversity, overgrowth of pathogens, or 

increased energy extraction in the gut microbiome, and becomes more pronounced with 

U.S. residence. 

• Analyze gut microbiomes from a cross-section of lean and overweight/obese 

Hmong and Karen women prior to immigration, newly arrived in the U.S., resided 

longer-term in the U.S., and who were born in the U.S. 

• Use taxonomic marker gene amplicon sequencing and deep shotgun 

metagenomics to measure shifts in functional and taxonomic compositions, and 

taxonomic biodiversity 

• Correlate microbiome features with anthropometric measurements used to assess 

obesity risk and length of residence in the U.S., while statistically controlling for 

intake of a subset of dietary nutrients, migration history, and antibiotic exposures 
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Specific Aim 2: Characterize gut microbiome recovery immediately after immigration.   

Hypothesis: Immigration induces compositional and functional shifts observable within 

the first 6 months in the U.S. 

• Characterize gut microbiome adaptation to residency in the U.S. at 1-month 

intervals within the same individual, and statistically controlling for intake of a 

subset of dietary nutrients, migration history, antibiotic exposures, and 

anthropometric measurements 

• Use taxonomic marker gene amplicon sequencing and deep shotgun 

metagenomics to measure shifts in functional, taxonomic, taxonomic biodiversity, 

and rate of change in the gut microbiome 

 

Specific Aim 3: Identify dietary components with utility of preserving the native gut 

microbiome.   

Hypothesis: Dietary fiber promotes maintenance of the native gut microbiome and 

protects against obesity risk.  

• Transplant gut microbiomes from pre-immigration and second-generation 

immigrant individuals into gnotobiotic mice, and apply a series of dietary 

interventions including varying diversity and concentration of fibers to determine 

their ability to preserve or deplete the native gut microbiome. 

• Dietary intervention groups will be compared to assess differences in body 

composition, metabolic markers, and metagenomic compositions to infer 

mechanistic connections between the microbiome, diet, and metabolism. 

 

Community-based research 

Community involvement was a critical aspect of the human study described in Chapter 4 

as the research team is a composed of community and academic members. In addition to 

the co-Principal Investigators and co-investigators listed above, our U.S. research team is 

composed of Hmong and Karen community researchers, all of whom have been trained 

on CBPAR methods and are current leaders in their communities. Their main roles have 
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been to consult with the development of recruitment materials, translate recruitment 

materials, contribute to the study design, promote and recruit for the study, prepare gut 

health educational materials, and deliver the dissemination event. To enhance community 

input, we have formed a community advisory board (CAB) with community leaders, 

community health professionals, and at-large community members from both Hmong and 

Karen communities. Early in the project, the community-academic research team held 

discussions with the CAB to discuss knowledge and awareness of the project topic, 

identify optimal recruitment strategies, review the study design and recruitment materials, 

and pilot the consent forms and surveys. The information from these discussions directly 

informed our study design, methodology, and dissemination strategies. Two additional 

advisory board meetings were held throughout the study period: (1) to check the progress 

of recruitment, troubleshoot, and improve the process, and (2) to prepare for the 

dissemination of results at the end of the study.  

 

Dissertation Organization 

This dissertation is organized as three manuscripts which have either been published or 

are being prepared for submission. It contains a general introduction, a description of the 

overall study objective and approach, one perspective paper, one technical paper, and one 

research paper, and an overall conclusions chapter. Note that these distinct article formats 

differ in organization; the technical paper does not contain a discussion section, and the 

research paper, which is formatted for submission to a specific journal, has a results 

section that embodies limited methods, results, and some discussion. Figures and 

references for all chapters can be found at the end of this paper.  

 

Chapter 2 is a perspective paper that combines both an in-depth literature review with a 

proposed model of studying antibiotic-induced dysbiosis in the infant gut microbiome. 

This chapter lays the groundwork for how critical the gut microbiome is in immune 

system development and for maintaining long-term health, and discusses an important 

Western-associated factor, antibiotics, in the context of gut health. Chapter 3 is a 

technical note describing a machine learning repository of curated microbiome datasets 
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for the computational community. This chapter is the result of important validation work 

done with published datasets, which was necessary for estimating sample sizes, selecting 

computational and statistical methods, and validating bioinformatics tools used for the 

human study found in Chapter 4. Chapter 4 forms the focal point of this dissertation, and 

describes human gut microbiome changes in immigrants and refugees in the United 

States (U.S.). Chapter 5 provides a conclusion section that discusses the findings, broader 

impact, and future work resulting from this thesis. 
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This chapter discusses an exposure commonly associated with developed countries: 

antibiotics. Here, we describe the important relationship between the gut microbiome and 

the immune system, and discuss the ramifications of overuse of antibiotics and its 

deleterious effects on gut microbiome development. 

 

Introduction 

Epidemiological studies have identified links between antibiotic usage in early infancy 

and diseases such as obesity, diabetes, and asthma. Longitudinal studies of antibiotic 

usage have demonstrated profound short- and long-term effects of antibiotics on the 

diversity and composition of the gut microbiota. While a large and growing number of 

studies implicate dysbiosis in numerous diseases (Biedermann and Rogler, 2015), there 

are currently few studies directly linking antibiotics, pediatric dysbiosis, and the later 

development of disease. The vast majority of antibiotic use occurs in the outpatient 

setting, where up to a third of prescriptions are unnecessary. Furthermore, even when 

antibiotics are indicated, the use of broad-spectrum antibiotics has increased dramatically 

over the past two decades, which could influence the structure and function of the 

developing microbiome more dramatically than targeted antibiotics. Understanding the 

short- and long-term effects of early life antibiotic use on the diversity and composition 

of the gut microbiota is critical in identifying the risks associated with these emerging 

prescription trends. 

 

Overprescription trends 

Antibiotics are by far the most common prescription drugs given to children (Chai et al., 

2012). In 2010, children received 74.5 million outpatient antibiotic prescriptions—one 

for every child in the US—accounting for one fourth of all medications for children 

(Hicks et al., 2013). Numerous studies have demonstrated that antibiotics are often 

prescribed unnecessarily (Gonzales et al., 2001; McCaig et al., 2003; Nash et al., 2002), 

with some estimates as high as 50% (Kronman et al., 2014). Nearly 30% of children 

receive an antibiotic prescription during an outpatient primary care visit (McCaig et al., 
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2003), most often inappropriately, for viral upper respiratory tract infections (Gonzales et 

al., 2001; Nash et al., 2002; Nyquist et al., 1998). Overuse of broad-spectrum antibiotics 

for conditions responsive to narrow-spectrum agents has been dramatically increasing 

(Hersh et al., 2013). Even after adjusting for differences in patient age, comorbidities, and 

sociodemographic factors, children with the same infections can receive vastly different 

rates of antibiotic prescriptions depending upon the practice or clinician visited (Fierro et 

al., 2014; Gerber et al., 2014). This phenomenon also seems to be universal: per capita 

antibiotic prescribing rates vary widely across US states (Hicks et al., 2013) and 

European countries (Goossens et al., 2005) , without reasonable cause for geographic 

differences in bacterial infection rates. These prescribing patterns suggest that (1) 

antibiotics are often overprescribed and (2) benchmarking data available in the form of 

clinical practices and geographical regions can be used to prescribe lower rates of 

antibiotics to help guide more judicious prescribing elsewhere. 

 

Additional harmful effects of antibiotic exposure 

In addition to the gut microbiome-mediated effects discussed below, inappropriate 

prescribing of antibiotics can lead to both drug-related adverse effects and the promotion 

of antibiotic resistance. More than 140,000 emergency department (ED) visits occur 

annually in the US for antimicrobial-related adverse effects, comprising almost 20% of 

all ED visits for drug-related adverse effects (Shehab et al., 2008). In addition to this 

direct patient harm, antibiotic use has been associated with the emergence of 

antimicrobial resistance, identified by the World Health Organization (WHO) as “one of 

the three greatest threats to human health.” Infections with resistant bacteria increase 

morbidity and mortality, and greatly increase the cost of medical care; the Institute of 

Medicine estimated that, in 2010, roughly $20 billion was spent on the treatment of 

antibiotic-resistant infections. Knowledge of these facts, however, has done little to curb 

antimicrobial use. Improving our awareness of the long-term implications of both 

necessary and unnecessary antibiotic exposure is important to better inform the 

risk/benefit ratio for antibiotic prescribing and to improve child health. 
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Normal host-microbiome development 

 
Gastrointestinal development 

Gastrointestinal (GI) development occurs throughout embryonic life, and its basic 

structure is first formed by the end of the first gestational trimester (Montgomery et al., 

1999). Tight junctions are present by 10 weeks of gestation and intestinal villi are formed 

by weeks 12-19 (Maheshwari and Zemlin, 2009; Montgomery et al., 1999; Polak-

Charcon et al., 1980). Postnatally, an abrupt shift in exposure from amniotic fluid to first 

foods occurs in the GI tract. This induces many changes along the GI tract, including a 

change in pH of the stomach. For example, some reports state the pH of the stomach is 

initially in the range of 6 – 8 (Avery et al., 1966), likely due to buffering by the amniotic 

fluid, which decreases to that of an adult (pH 1.5 - 2.5) within the first hours following 

birth (Kelly et al., 1993; Lebenthal and Lebenthal, 1999; Ménard, 2004). However, due to 

the consumption of milk, and its buffering capabilities, the pH of the infant stomach often 

returns to a circum neutral level of 7-7.6 (Hibberd et al., 1982). The higher pH of the 

stomach early in life has a meaningful impact, including a higher absorption rate of 

nutrients and a diminished digestive capacity compared to later in life, which may 

support transit of ingested bacteria to colonize the lower GI tract. Throughout postnatal 

development, the infant GI tract also increases in size in both length and in diameter, and 

loses most of its early-stage porosity within days post birth due to milk-borne growth 

factors and hormones that stimulate growth and development (Cummins and Thompson, 

2002). 

 

Development of the GI-associated lymphoid tissue (GALT), including mesenteric lymph 

nodes, Peyer’s patches, and lymphocytes in the lamina propria, is complete in full-term 

infants at birth (Forchielli and Walker, 2005). For example, goblet cells, responsible for 

mucin production, are functional by 12 weeks of gestation (Montgomery et al., 1999), as 

are Paneth cells, which can secrete defensins and lysozymes by gestational weeks 13 and 

20, respectively (Louis and Lin, 2009; Maheshwari and Zemlin, 2009; Rumbo and 

Schiffrin, 2005). Although full-term infants are born with fully developed digestive 
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tracts, exogenous stimulation through exposure to dietary antigens, hormones, growth 

factors, and bacteria is required to elicit proper function throughout life (Forchielli and 

Walker, 2005). 

 

Microbiome development 

Although the gastrointestinal tract of a healthy infant is generally considered to be sterile 

before birth, recent work suggests that initial colonization may take place in-utero 

(Aagaard et al., 2014; Funkhouser and Bordenstein, 2013; Matamoros et al., 2013). Hours 

after birth, microorganisms from the mother’s vaginal, fecal, and/or skin microbiome and 

the environment are important colonizers of the infant gut (Penders et al., 2006), with 

actual contributions depending on mode of delivery. Several other factors including 

prematurity, infant diet (breast milk or formula), hygiene, and use of antibiotics will 

ultimately impact the composition of the infant gut microbiome. Despite a seemingly 

chaotic colonization, with large swings in composition over time, gut microbiome 

development is governed by Darwinian dynamics: microbes best adapted for the 

changing conditions of the gut will be most likely to survive. We can see this clearly 

throughout the first few weeks of life, as the colonization of facultative aerobes reduces 

the availability of oxygen, which then permit the growth of strict anaerobes 

(Bezirtzoglou, 1997). As illustrated in Figure 2.1, compositional changes in response to 

diet and host development ocurr throughout the first year of life. In the United States, the 

infant gut is initially colonized with Proteobacteria and Firmicutes, followed by a gradual 

increase in Actinobacteria (potentially due to the introduction of breastmilk (Favier et al., 

2003; Sela et al., 2008; Yoshioka et al., 1983)). By six months of age, Bacteroidetes 

dominate while Proteobacteria and Actinobacteria gradually decline, which may be 

attributed to the abundance of carbohydrates in solid foods that coincides with weaning 

(Koenig et al., 2011; Vaishampayan et al., 2010). By the end of the first year of life, the 

infant gut is dominated by bacterial phyla Bacteroides and Firmicutes (Figure 2.1). The 

healthy infant gut continues with dramatic compositional changes throughout the first 

two years of life before becoming indistinguishable from an adult gut microbiome at age 

three (Yatsunenko et al., 2012). 
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Important host-microbiome interactions 

Maturation of the intestinal immune system is contingent on parallel development of the 

gut microbiome (Figure 2.1). Germ-free animals have been found with significant 

immunological defects in the gut-associated lymphoid tissues (Falk et al., 1998; 

Macpherson and Harris, 2004) as well as improper development of Peyer’s patches and 

mesenteric lymph nodes (Round and Mazmanian, 2009). Peyer’s patches and the 

mesenteric lymph nodes develop prenatally and isolated lymphoid follicles develop 

postnatally, but all of these tissues require interaction with key members of the gut 

microbiome in order to ensure proper differentiation and specification, and complete 

development of adaptive immunity (Cherrier and Eberl, 2012; Maynard et al., 2012). The 

immune system must maintain an anti-inflammatory state (Tsuji and Kosaka, 2008) in the 

gut, especially during exposure to the considerable number of innocuous antigens from 

commensals, hormones, and food. The interactions of diverse cell types are necessary to 

carry out the complex functions of the immune system (Adkins et al., 2004); we highlight 

several immune cell types with important dependencies on the gut microbiome. Dendritic 

cells (DCs), one of the most important types of antigen-presenting cells, sample the 

lumen and are responsible for orchestrating inflammatory or tolerogenic responses. To 

help the immune system carry out appropriate responses, DCs can suppress or induce the 

activation of antigen-specific T cells, and have the unique ability to differentiate naive T 

cells into effector or regulatory T cells to target specific antigens (Lanzavecchia and 

Sallusto, 2001; Macatonia et al., 1995). T helper cells are critical in processing presented 

antigens into specific cytokines that provide direction for other immune cells and to 

eventually generate an immunological response. Members of the gut microbiome have 

been found to differentiate The Th17 class of T helper cellssecrete IL-17 to produce 

defensins (Kao et al., 2004) and recruit neutrophils (Aujla et al., 2007) to fight infections 

at mucosal surfaces (Atarashi et al., 2008; Ivanov et al., 2009). Pro-inflammatory Th17 

cells must maintain balance with anti-inflammatory regulatory T cells, particularly for the 

prevention of autoimmune disorders. Certain Clostridia strains have been found to help 

with expansion and differentiation of regulatory T cells (Atarashi et al., 2013), and have a 
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direct role in reducing intestinal epithelial permeability by stimulating innate lymphoid 

cell and T cell production of cytokine IL-22 (Stefka et al., 2014). Innate lymphoid cells 

help induce pro-inflammatory responses and serve as the main source of IL-22 (Sawa et 

al., 2010); this cytokine is important for inducing mucus production from goblet cells, 

stimulating the production of antibacterial proteins, protecting cells from damage, and 

regulating cell differentiation (Sabat et al., 2014). A number of studies found that 

microbial signals modulate the amount of IL-22 produced by innate lymphoid cells 

(Sanos et al., 2009; Satoh-Takayama et al., 2008; Sawa et al., 2010; Sonnenberg et al., 

2012; Stefka et al., 2014; Vonarbourg et al., 2010), suggesting the importance of the gut 

microbiome in host defense mechanisms against infectious and inflammatory diseases 

(Rutz et al., 2013). Furthermore, Bifidobacterium longum has been found to assist in the 

maturation of DCs in Peyer's Patches and the development of T cells in the thymus (Dong 

et al., 2010). Specific microbial signals have been deemed necessary for proper education 

of regulatory T cells and invariant natural killer T (iNKT) cells (Hansen et al., 2012; 

Olszak et al., 2012), which are a subset of T cells capable of quickly inducing an 

abundance of cytokines that can stimulate or suppress a variety of immune responses. 

Additional important microbe-host interactions and mechanisms will be presented later in 

the context of our proposed model. Considering how critical the various immune cells 

and their intricate signaling networks are for supporting immune health, disruptions 

hindering their development may have lasting deleterious effects. 

Other major influences on microbiome development 

Diet plays a large role in the colonization of the modern infant GI tract due to the vast 

compositional differences between human milk and infant formula. The most notable 

difference in the microbiome of breastfed versus formula fed infants is the predominance 

of Bifidobacteria and Lactobacilli in breastfed infants, while formula-fed infants harbor 

more Enterococci and Enterobacteria (Palmer et al., 2007). There are also easily detected 

differences in total community membership between breastfed and formula-fed infants 

when looking at twin cohorts (Yatsunenko et al., 2012). Human milk is able to modulate 

bacterial colonization in the infant gut with distinct components not found in formulas: 
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the human milk microbiome, factors that stimulate bacterial growth (prebiotics), and 

factors that prevent bacterial growth (antimicrobials). The human milk microbiome 

consists primarily of Proteobacteria and Firmicutes (Nichols et al., 1974), and has of a 

core group of taxa found in most human milk samples that include Staphylococcus, 

Streptococcus, Serratia, Pseudomonas, Corynebacterium, Ralstonia, Propionibacterium, 

Sphingomonas, and Bradyrhizobiaceae (Hunt et al., 2011). The human milk microbiome 

also changes over time, and is dependent on the mother’s weight (Cabrera-Rubio et al., 

2012). For example, Weissella, Leuconostoc, Staphylococcus, Streptococcus, and 

Lactococcus are predominant in milk immediately after giving birth, and milk from obese 

mothers is less diverse than that of non-obese mothers (Cabrera-Rubio et al., 2012). 

These ingested bacteria provide a constant source of community members to help 

colonize the GI tract. Milk-borne prebiotics that modulate the bacteria present in the GI 

tract include human milk oligosaccharides (HMOs), which are sugars produced solely for 

consumption by microbes. These include the “original” HMO, bifidus factor (Nichols et 

al., 1974), that stimulates Bifidobacterium bifidum and hundreds of other sugars (all 

within a family of unconjugated glycans containing lactose at the reducing end) which 

primarily promote the growth of Bifidobacterium longum subsp. infantis (Bode, 2012). 

Antimicrobials in human milk that also influence the microbes within the GI tract include 

secretory immunoglobulin A (SIgA), which provides antigen-specific protection against 

microbes that the mother has already encountered (Rogier et al., 2014), and innate 

immune proteins, such as lactoferrin and lysozyme, that harbor bactericidal activity 

(Arnold et al., 1980). Milk obtained from mothers of preterm infants had highest 

concentrations of cytokines and immunoglobulins immediately after giving birth, further 

supporting the importance of breast milk consumption in early life (Moles et al., 2015). 

  

Mode of birth delivery has an impact on the microbiome of infants, as the total 

microbiome (skin, oral mucosa, and nasopharyngeal aspirate, and meconium) of 

vaginally delivered infants resembles the maternal vaginal and intestinal microbiome, 

while infants delivered by cesarean section have total microbiomes resembling the 

maternal skin microbiome (Dominguez-Bello et al., 2010). Specifically, the microbiomes 
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of vaginally delivered infants consist mostly of Lactobacillus, Prevotella, Atopobium, or 

Sneathia spp, whereas the microbiome of cesarean section delivered infants contain 

Staphylococcus spp (Dominguez-Bello et al., 2010) and less Bifidobacterium (Biasucci et 

al., 2010).  

Approaches for studying pediatric dysbiosis and related disease 

The mechanisms and health consequences of pediatric dysbiosis are complex and 

multifactorial, and are further complicated when also considering infant development 

(gut microbiome, immune system, and their interactions). Using a systems approach, we 

consider five interdependent models for understanding dysbiosis that focus on different 

aspects of disease mechanisms. We discuss these conceptual models in terms of their 

relative merits for clarity, potential for organization, and ability to express multi-factorial 

disease pathways. We restrict our hypotheses to those that assume long-term health 

effects of one or more short discrete courses of antibiotics, since that is by far the most 

common type of antibiotic exposure in human children (Gevers et al., 2014). Each 

perspective has strengths in its ability to generalize certain aspects of pediatric dysbiosis. 

In general, we find a combination of the dysbiosis-centric and disease-centric 

perspectives to be the most useful for discussing disease mechanisms. 

 

A Dysbiosis-centric view 

The gut microbiome is in constant flux; the community composition continuously adapts 

to environmental exposures and host developmental changes (Caporaso et al., 2011; 

Human Microbiome Project Consortium, 2012a). This adaptability is essential for 

maintaining gut homeostasis, but drastic changes, such as those induced by antibiotics, 

can potentially lead to negative health consequences. Pediatric dysbiosis can be 

characterized by these drastic changes in the microbial community, represented here as 

four distinct types. Since broad-spectrum antibiotics are designed to eradicate multiple 

bacterial taxa, the gut microbiome may be impacted by: (1) an unintended loss of 

keystone taxa that are critical for maintaining homeostasis or proper host development 

(e.g., immune system), or (2) an overall loss of biodiversity, which can have inherent 
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health risks on its own (e.g., the hygiene hypothesis) and also lead to other dysbiosis 

types (Figure 2.1). Taxa that have been eradicated from their niches leave vacancies to be 

filled by (3) blooms of pathogens and pathobionts. Even if the infant gut microbiome can 

recover from these dysbiotic states to arrive at some form of homeostasis, improper or 

partial recovery can result in a (4) shift in functional capability; for example, becoming 

more efficient at extracting energy (Figure 2.1). These dysbiosis types sometimes 

overlap, further adding to the complexity of the system and the challenge of building a 

unified conceptual model for pediatric dysbiosis research. Viewing pediatric dysbiosis 

from the perspective of different dysbiosis types is particularly important for 

understanding how small changes to the relatively simple infant gut can manifest as 

larger repercussions during adulthood. Such a dysbiosis-type model is crucial for 

understanding the community dynamics within the gut microbiome, but is limited in its 

ability to easily address several factors such as the age of the infant, the overlap and 

transition between dysbiosis types, the many-to-many relationship between dysbiosis 

types and disease phenotypes, and the parallel development of the immune system.  

 

A Disease-centric view 

In the context of different aspects of host development and specific taxa affected, the 

previously described pediatric dysbiosis types can give rise to a variety of health 

consequences. Deconstruction of the health outcome with a top-down approach is another 

model for understanding dysbiosis. In this disease-centered model, health outcomes are 

generalized by disease class, and then further characterized by specific mechanisms and 

interactions with subsystems of the model (host immune system, gut microbiome, host 

development, etc.) (Figure 2.1). For example, obesity-related pediatric dysbiosis in the 

context of this model begins with antibiotic treatment at any time point during the first 

two years of life. Biodiversity is depleted during treatment but rebounds after treatment 

ends, inducing large changes in taxonomic composition. In the case of obesity, these 

compositional changes also result in functional changes affecting metabolism; the 

microbiome becomes more efficient at extracting energy from multiple sources, and 

hence predisposes the host to obesity (Turnbaugh et al., 2006). Antibiotic exposure at a 
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younger age exacerbates predisposition to disease (Cox et al., 2014) and compounded 

disturbances may lead to unanticipated consequences (Paine et al., 1998). Other disease 

classes may include allergies and atopic diseases, autoimmune disorders, diabetes, and 

infectious disease. This model encapsulates major interdependencies within each disease 

class while accounting for temporal factors. The main shortcoming of the disease-centric 

view of pediatric dysbiosis is that it does not easily allow synthesis of common 

mechanisms across diseases. 

An Age-centric view 

Dysbiosis types can result in complete recovery with minimal impact to host health, or 

can have drastic unintended consequences depending on the stage of host development. 

Development of the microbiome and the host immune system can be categorized 

conveniently, although approximately, into four general stages: (1) 0 to 6 months, (2) 6 to 

12 months, (3) 12 to 24 months, and (4) 24 months and older. The infant is most 

vulnerable to developing immunological defects during Stage 1, when adaptive immunity 

interaction with keystone taxa is most critical (Prescott et al., 1999; Rautava et al., 2004; 

Van Der Velden et al., 2001). By Stage 4, the gut microbiome establishes a new-formed 

stasis as it reaches maturity, carrying forth any existing functional shifts that could 

predispose the host to future diseases. Although the vulnerabilities of each stage of 

development are important considerations for understanding dysbiosis, considering 

segregated stages hinders characterization of mechanisms that span multiple stages. 

  

A Response-centric view 

The gut microbiome transitions through several stages in response to a course of 

antibiotics: pre-treatment, during treatment, recovery, and long-term stasis (Figure 2.2a). 

Dysbiosis types that emerge during treatment include loss of keystone taxa and short-

term metabolic shifts, both of which would be compounded with multiple courses of 

antibiotics. Immediately after the antibiotic course, the gut microbiome begins to recover, 

but not without several potential complications. The loss of diversity imposed by 
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antibiotics may allow for blooms of pathogens and pathobionts; the adaptive immune 

system may be underdeveloped and keystone taxa may still not have recovered (further 

delaying immune development); and metabolic shifts may begin to take place. Eventually 

the gut microbiome reaches a form of stasis, which may be different from its pre-

treatment stage (Figure 2.2). At this stage, permanent metabolic shifts may have been 

established, a loss of biodiversity accompanied by a bloom of pathobionts may persist, 

and the host may be predisposed to an increased risk of infectious disease. Although the 

dynamics of the community structure in response to antibiotics are useful for identifying 

short-term vulnerabilities, mechanisms of dysbiosis typically start during one stage (e.g., 

treatment stage) and end in another (e.g., recovery stage), making this model difficult and 

confusing to work with. 

  

A Recovery-centric view 

Although adult gut microbiomes experience day-to-day changes, they are relatively stable 

when compared to infant gut microbiomes, which are characterized by large swings in 

taxonomic composition, especially throughout the first year of life. Regardless of the 

seemingly random shifts, there exists a clear trajectory of healthy development in the 

infant gut microbiome when assessing biodiversity and relative abundances of specific 

taxa (Figure 2.2). This model defines dysbiosis in terms of how the microbiome recovers 

back to this trajectory: fast recovery, slow recovery, or incomplete recovery (Figure 

2.2a). During fast recovery, there may be a short-term loss of diversity but keystone taxa 

are preserved and the gut microbiome quickly rebounds back to normal with little impact 

to the host. With a slow recovery, there may be loss of keystone taxa during a critical 

time for interaction with the immune system, therefore causing a delay in immune 

development. Biodiversity may be low and it may take some time before keystone taxa 

can reestablish and interact with the immune system before getting back on the normal 

trajectory. The host is most vulnerable to infectious disease during this prolonged state of 

recovery, with both an immature immune system and a low-diversity microbiome. 

Despite eventually recovering and reestablishing a healthy gut microbiome, the adaptive 
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immune system may have developed antibodies against commensals during the long 

recovery period, predisposing the host to autoimmune diseases. During an incomplete 

recovery, the compositional changes are so drastic that the gut microbiome reaches a 

completely new form of stasis, placing it on a trajectory completely different than 

expected (Figure 2.2a). These changes are accompanied by functional and metabolic 

shifts in the gut microbiome and come with disease risks of their own. The types of 

recovery in this model are not mutually exclusive since it is possible that either a fast or 

slow recovery rate may lead to an incomplete recovery. This model also does not address 

how a recovery type may be dependent on a specific development stage, as considered by 

the age-centric view. 

 

Current evidence for disease mechanisms 

In considering several alternative lenses through which to discuss and organize pediatric 

dysbiosis, we have decided to use a combination of the dysbiosis-centric and disease-

centric perspectives for summarizing and synthesizing existing knowledge about 

potential disease mechanisms (Table 2.1). This combined model allows us to map 

multiple causes to the same disease, while keeping track of different developmental and 

treatment stages that underlie the various known or proposed mechanisms. Although the 

causal pathway between dysbiosis and disease can take many forms, we present four 

important disease classes in major contributing dysbiosis types. 

Obesity 

Evidence for antibiotics-induced obesity is primarily characterized by shifts in functional 

capability, or more specifically, long-lasting metabolic shifts that result from incomplete 

recovery back to the normal trajectory. Recent work found that mice given sub-

therapeutic levels of antibiotics after weaning exhibited increased adiposity, large 

taxonomic changes in their gut microbiomes, and increased levels of short-chain fatty 

acids (SFCAs) as well as counts of bacterial genes involved in SFCA metabolism (Cho et 

al., 2012b). These mice also had lower caloric output in their faecal pellets despite dietary 

intake similar to controls, suggesting their gut microbiota developed the ability to extract 
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increased energy from indigestible components (Cho et al., 2012b). Furthermore, low-

dose antibiotics started even earlier in life (prior to weaning) resulted in mice showing a 

more pronounced increase of adiposity, and induced adipogenesis synergistically with a 

high fat diet; fecal transplantation into germ-free mice lead to increased fat mass relative 

to transplantation from mice without antibiotics, implicating the gut microbiome in the 

causal pathway of obesity (Cox et al., 2014). Some epidemiological studies further 

substantiate the long-lasting effects of early exposures, finding that antibiotic exposures 

among infants younger than six months are significantly associated with increased BMI 

later on in life, although in general these findings are somewhat mixed and warrant 

follow-up in a prospective study (Ajslev et al., 2011; Bailey et al., 2014; Trasande et al., 

2013). The 0-6 month window is a time of rapid host and microbiome development, yet 

also represents a period when the microbiome may be most susceptible to adopting long-

term changes. Additional studies, especially with human subjects, are necessary to 

understand how exposures during various developmental windows can alter the gut 

microbiome and host metabolism. 

Allergy and Atopic Disorders 

A considerable number of epidemiological studies link early antibiotic exposures, 

especially multiple courses, to atopic diseases later in life (Droste et al., 2000; Farooqi 

and Hopkin, 1998; Johnson et al., 2005; McKeever et al., 2002; Ong et al., 2014; 

Wickens et al., 1999). As mentioned previously, normal development of the immune 

system is dependent on key members of the gut microbiome for the development of 

regulatory components of the immune system as well as maintaining homeostasis at the 

gut epithelium. Allergic and atopic disorders are primarily caused by impaired 

components of the adaptive immune system that rely largely on the gut microbiome, for 

example B cell maturity (Lundell et al., 2014) and regulatory T cell differentiation and 

expansion (Atarashi et al., 2013). Distinct compositions of infant gut microbiomes have 

been associated with the development of atopic diseases later in life (Abrahamsson et al., 

2012; Atarashi et al., 2013; Bisgaard et al., 2011; Björkstén et al., 2001a; Kalliomäki et 

al., 2001); and therefore it is conceivable that early exposure to antibiotics, especially 
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broad-spectrum antibiotics, could be responsible for shaping the gut microbiome towards 

predisposition to allergy and atopic diseases. We hypothesize that two dysbiosis types 

may be responsible for allergy and atopic diseases: loss of keystone taxa and blooms of 

pathogens and pathobionts. Evidence for loss of keystone taxa has been shown in mouse 

studies, where antibiotic exposure led to changes in the gut microbiome, which 

eventually impacted the immune system. Reductions in regulatory T cell counts (Russell 

et al., 2012), and increases in serum IgE concentrations and basophil-associated TH2 cell 

responses (Hill et al., 2012) were observed with onset of the allergic disease phenotype. 

These observations agree with previous studies that found that an overabundance of IgE 

and the cytokine IL-4, produced by TH2 cells, are associated with allergies (Haas et al., 

1999; Jujo et al., 1992). Another study found that antibiotics given to neonatal mice 

reduced the abundance of Clostridia and as a result induced food allergies; clostridia 

colonization is important for stimulating IL-22 production to prevent food antigens from 

crossing the gut epithelium (Stefka et al., 2014). Microbial taxa considered important for 

immune development may differ from one developmental stage to the next, therefore 

warranting further investigation into the importance of timing of antibiotic exposure in 

atopic disease. Although some antibiotic exposures may only create short-term dysbiosis 

and eventually allow the microbiome to recover, if the period of dysbiosis coincides with 

critical developmental time points, there is potential for long-term impact on immune 

health. Several studies have indicated the first six months of life as the most critical for 

immune development (Prescott et al., 1999; Rautava et al., 2004; Van Der Velden et al., 

2001), suggesting the importance of host-microbiome interactions during this time. 

Germ-free mice have been shown to develop immune defenses against allergic asthma if 

colonized as neonates, but not if colonized in adulthood (Olszak et al., 2012). Similarly, 

Helicobacter pylori colonization in neonatal mice stomachs provided increased 

protection against asthma, compared to adult colonization (Arnold et al., 2011). 

Furthermore, Russell et al. induced asthma in mice with early antibiotic exposure but 

failed to reproduce the same phenotype with antibiotic exposure in adult mice (Russell et 

al., 2012). These studies suggest that antibiotic exposure during this critical window of 

development may have the most pronounced and long-lasting consequences. 
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In addition to the loss of keystone taxa, antibiotic exposure commonly results in an 

immediate reduction of biodiversity which may allow for unusual blooms of rare 

members of the gut microbiome. Blooms of certain strains of Clostridia, despite the 

importance of this taxa of bacteria in immune development, may actually contribute to 

atopic disease (Penders et al., 2013). Additionally, severe dysbiosis in a developing 

neonatal gut may allow for bacterial translocation of commensals and hence the 

development of systemic antibodies against these otherwise innocuous microbes. As seen 

in Crohn’s disease (Adams et al., 2008), it is highly plausible that inappropriate immune 

responses against commensals could also lead to hypersensitivity to common antigens, 

eventually leading to allergy and atopic diseases. 

  

Autoimmune diseases 

Although autoimmune diseases such as type 1 diabetes, rheumatoid arthritis, and multiple 

sclerosis have a large genetic component, the gut microbiome has recently been found to 

be a potential major mediator of these diseases (Brown et al., 2011; Cani et al., 2008; 

Giongo et al., 2011; Lee and Mazmanian, 2010; Sellitto et al., 2012; Vaarala et al., 2008; 

Valladares et al., 2010; Wen et al., 2008). Autoimmune diseases result from an 

improperly developed immune system, which is, in part, mediated by the gut 

microbiome; there is evidence that germ-free mice are incapable of developing 

rheumatoid arthritis and multiple sclerosis (Lee and Mazmanian, 2010; Wu et al., 2010). 

In support of the hygiene hypothesis in autoimmune disease, one study found that the 

incidence of diabetes in non-obese diabetic mice raised in conventional breeding 

environments doubled when compared to pathogen-free breeding environments (Bach, 

2002), which suggests that antibiotics could exacerbate the onset of diabetes. Recent 

work found that the number of courses of antibiotics during childhood is associated with 

risk of juvenile rheumatoid arthritis (Horton et al., 2014), and the risk of inflammatory 

bowel disease (Hviid et al., 2011). There is also evidence that antibiotics are associated 

with celiac disease (Mårild et al., 2013). Studies examining the effects of antibiotic 

exposure on type 1 diabetes have yielded inconsistent results: one study found that 
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antibiotics given to non-obese diabetic mice during pregnancy modulated type 1 diabetes 

development in offspring (Tormo-Badia et al., 2014), but other studies found antibiotics 

to be protective (Brugman et al., 2006; Cani et al., 2008). There is currently limited 

evidence linking antibiotic exposures to autoimmune disorders, but we hypothesize that 

the underlying mechanisms are driven by loss of keystone taxa and blooms of pathogens 

and pathobionts, similar to those of allergy and atopic disorders due to the critical role of 

the immune system in these diseases. 

Infectious diseases 

Antibiotics are used to eradicate one or more bacterial taxa, therefore a temporary 

reduction in biodiversity is expected. Current studies report a large range of percent 

losses of biodiversity after antibiotic exposure (Figure 2.3), suggesting that some subjects 

may take longer to recover to baseline than others (Figure 2.2). The recovery period 

represents a vulnerable time for the host since not all members of the microbial 

community are present to suppress, potentially, blooms of pathogens and pathobionts, 

and hence prevent infection. A number of studies support this theory, showing an 

increased susceptibility of infection after antibiotic exposure (Croswell et al., 2009; 

Deshmukh et al., 2014; Lawley et al., 2008; Sekirov et al., 2008), with a number of 

studies highlighting the proliferation of antibiotic-resistant strains (Ayres et al., 2012; 

Brandl et al., 2008; Buffie et al., 2012; Donskey et al., 2000; Ubeda et al., 2010). 

Clostridium difficile infection in adults is an appropriate example of how loss of 

biodiversity enables blooms of pathogens in the gut. Necrotizing enterocolitis in pre-term 

infants has also been linked to antibiotic use prior to onset of disease (Alexander et al., 

2011; Cotten et al., 2009) and the gut microbiomes of children about to succumb to 

necrotizing enterocolitis exhibit decreased biodiversity and blooms of 

Gammaproteobacteria (Mai et al., 2011a; Wang et al., 2009). Although pre-term infants 

have a distinct set of health risks, this mode of infection can be extended to other disease 

agents in full-term infants as well (Figure 2.2b). This need for ecological checks and 

balances in the gut microbial community extends beyond its bacterial members; 

antibiotic-induced dysbiosis has been shown to impair innate antiviral immunity against 
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the influenza virus (Abt et al., 2012) as well as to enable blooms of opportunistic fungi, 

such as Candida albicans (Noverr et al., 2004; Seelig, 1966; Sharp, 1954; Torack, 1957). 

Longer-duration antibiotic therapy appears to be correlated with length of recovery 

period (Fouhy et al., 2012), which also increases the risk of infection (Alexander et al., 

2011). Identifying when a microbiome is fully recovered will be challenging given the 

inter-individual deviations of the adult gut microbiome, and will be even more difficult 

with the highly variable, developing infant gut microbiome. Lawley et al. found that mice 

exposed to antibiotics still exhibited increased colonization of Salmonella Typhimurium 

despite recovery of bacterial counts (Lawley et al., 2008), suggesting that not only is 

microbiome recovery challenging to define, but that current methods for measuring 

biodiversity may be insufficient for assessing infection risk. Although previous studies 

have focused on short-term risks for infection, it also is plausible that antibiotic exposure 

could lead to an incomplete, yet stable and permanent, recovery of the microbiome 

(Dethlefsen et al., 2008), potentially predisposing the recipient to infectious disease later 

in life. 

Future directions 

The model presented here links together the existing epidemiological and mechanistic 

studies on antibiotics and various gut-mediated disease outcomes. Large, integrated 

studies designed to focus on short- and long-term impact of antibiotics, both in terms of 

microbiome composition and in terms of disease risk, with careful consideration of the 

factors presented here, will be critical as we move toward an increased understanding of 

related disease etiologies. Such studies will enable important applications, such as the 

development of diagnostic tools to discover complex microbial biomarkers for dysbiosis 

risk. To demonstrate the potential importance, using a machine learning model trained on 

existing data (Knights et al., 2011a; Yatsunenko et al., 2012), we developed a 

Microbiome Maturity Index capable of accurately predicting the age of healthy infant gut 

microbiomes within 1.3 months (standard error) (Figure 2.4). Similar models have 

already been shown to be successful in identifying dysbiosis; Subramanian et al. used 

similar methods and found that children with severe acute malnutrition had gut 
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microbiomes that were significantly immature compared to healthy children 

(Subramanian et al., 2014). There is enormous potential for the microbiome field to 

revolutionize diagnostics and therapeutics, yet published human infant studies have not 

been designed to infer causality. Establishment of a large and diverse baseline cohort to 

define healthy development of the infant microbiome in presence and absence of 

perturbation by caesarian delivery, breast-feeding alternatives, and antibiotic usage is 

essential to refine our understanding of “normal development” so that pediatric dysbiosis 

can be identified robustly. Additionally, longitudinal and cross-sectional studies assessing 

the short-term, mechanistic, and longer-term health impact of antibiotics will be 

necessary to advance the diagnosis, interpretation, and treatment of pediatric dysbiosis, 

and to provide evidence-based recommendations regarding safe practices for antibiotic 

usage in infants. 
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The microbiome research field consists of a wide variety of complex datasets; as a result, 

there does not yet exist a single gold standard bioinformatics pipeline for analyzing and 

interpreting data generated from these studies. In preparation for our human study in 

Chapter 5, we validated a series of statistical models and computational tools against 

published datasets to measure effect sizes and to select methods that were most robust. 

As a result of these efforts, we generated a large set of curated microbiome datasets, 

which we have made publicly available for other computational scientists. 

 

Introduction 
Machine learning is widely used as a method for classification and prediction, with a 

growing number of applications in human health (Jordan and Mitchell, 2015). The use of 

machine learning in biological fields (Furey et al., 2000; Shipp et al., 2002), and more 

specifically the microbiome research field (Aagaard et al., 2012; Knights et al., 2011b; 

Smith et al., 2013; Yatsunenko et al., 2012), has grown exponentially due to the 

robustness of these algorithms to high dimensional data. In addition, large-scale meta-

analyses often requires manual curation of metadata and standardized processing of raw 

sequence data, resulting in variation in chosen datasets across studies (Pasolli et al., 2016; 

Sze and Schloss, 2016). Unfortunately, the resulting processed data is often not shared 

due to the use of previously published data inherent to meta-analyses. This results in 

inefficiencies in the manual steps of metadata curation. In addition, microbiome research 

data can be challenging to access for expert machine learning algorithm developers, who 

often do not have the domain expertise required to parse the metadata in complex studies. 

The University of California Irvine (UCI) Machine Learning Repository (Asuncion and 

Newman, 2007) revolutionized machine learning methods development by giving 

developers access to many curated datasets; its widespread usage and impact can be seen 

from its thousands of resulting citations. Currently, we are unaware of any machine 

learning repository that offers access to microbiome datasets. We constructed a 

complementary database to address this deficiency, and hope that it will promote the 

development of and usage of improved machine learning methods for the microbiome 

community. 
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Workflow 
We present the Microbiome Learning Repo (ML Repo), a repository of 33 curated 

classification and regression tasks using human microbiome data. Our 33 tasks are 

curated from 15 publicly available human microbiome datasets, which include 12 

amplicon-based and 3 shotgun sequencing datasets (Table 3.1). These datasets vary 

across sequencing technology platforms, 16s hypervariable regions, and study design, in 

order to help developer ensure robustness of algorithms across data types. We 

streamlined the microbiome data using a single post-processing workflow (Figure 3.1A). 

We downloaded trimmed and quality filtered sequencing reads for n=8 datasets from 

QIITA (Qiita Development Team), and raw sequences for n=7 datasets from public 

repositories. We preprocessed raw sequences using SHI7 (Al-Ghalith et al., 2018) or 

QIIME (Caporaso et al., 2010) according to individual technologies and characteristics of 

each study. Full details regarding the data preprocessing are provided for each data set in 

the repo. We picked Operational Taxonomic Units (OTUs) from all quality filtered 

sequences using a closed-reference method with the BURST (Al-Ghalith and Knights, 

2017) aligner against both the NCBI RefSeq 16S ribosomal RNA project (O’Leary et al., 

2016) and the Greengenes 97 database (McDonald et al., 2012). Samples with depths 

lower than 1000 sequences per sample were dropped for n=10 datasets, while we applied 

a lower threshold of 100 sequences per sample for n=5 datasets which had lower 

expected bacterial load. As a result, for each dataset we generated RefSeq-based OTU 

and taxa abundance counts, and Greengenes-based OTU and taxa abundance counts. We 

excluded additional post-processing filtering and normalization steps so that these 

parameters can be included in future benchmarking use cases as needed. We also limit 

our data to OTU and taxa tables as other metrics such as alpha and beta diversity can be 

subsequently generated as needed. 

  

Sample metadata from individual studies were manually curated to generate viable 

prediction tasks. When available, published study exclusion criteria was applied 

accordingly and confounders were removed by dropping samples or stratification. Studies 

that were cross-sectional by design but contained several samples per subject were 
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filtered to contain one sample per subject. Well-known confounders, such as geography, 

were accounted for when constructing prediction tasks for other human-associated 

conditions. Longitudinal studies were reduced to single time points of interest to 

minimize the effect of high intra-individual similarities. Hence, each prediction task is 

made available as an individual, compartmentalized metadata file that contains sample 

identifiers, responses to predict, and optionally, confounder variables to control for. As a 

result, we generated 33 distinct tasks for predicting human-associated responses. 

 

Methods 
 
Pre-processing of sequencing reads 

When available, preprocessed FASTA files were downloaded from QIITA (or previously, 

the QIIME database). For all other datasets, raw FASTQ files were downloaded from 

sources listed in Table 3.1. Sequences were trimmed and quality filtered using SHI7 (Al-

Ghalith et al., 2018) or QIIME (Caporaso et al., 2010). OTUs were picked from 

processed FASTA files using BURST (Al-Ghalith and Knights, 2017) with Greengenes 

(McDonald et al., 2012) 97 or the NCBI RefSeq Targeted Loci Project 16s project 

(O’Leary et al., 2016) (accessed on 17-07-04). Samples with sequencing depth lower than 

1000 sequences per sample were dropped for all studies, except for five datasets (David 

et al., 2014; Gevers et al., 2014; Human Microbiome Project Consortium, 2012b; Kostic 

et al., 2012; Turnbaugh et al., 2009b), where the minimum threshold was 100 sequences 

per sample. 

  

Selection of classification tasks 

Classification tasks were selected based on reported study results, biologically relevant 

high-level phenotypes, and sufficient sample sizes. Original metadata files and research 

methods were rigorously and manually curated in order to subset samples with minimal 

confounders. For confounders that were inherent to the study, we include an additional 

variable to control for in the task metadata files. Presence of control variables can be 

found by examining “control_vars” in the Tasks table. 
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Website generation 

Website templating was developed using Jinja2 (Ronacher, 2017) and custom Python 

scripts. Individual webpages were generated by iterating through items in the Tasks and 

Datasets tables, and dynamically populating templates in order to generate individual 

Markdown (Gruber et al., 2004) pages. The resulting Markdown pages are hosted as 

GitHub Pages. 

  

Case Study Benchmarking 

Case study results were generated with custom R (Team and Others, 2013) scripts, which 

can be found in the /example folder in the MLRepo Github repository. To compare 

machine learning models, we iterated through tasks with binary responses. OTU counts 

were converted to relative abundances, filtered at a minimum of 10% prevalence across 

samples, and collapsed at a complete-linkage correlation of 95%. We then constructed a 

5-fold cross-validation for tasks containing more than 100 samples, or a leave-one-out 

cross-validation for tasks with smaller sample sizes. For n-fold cross validation, samples 

were assigned to folds such that classes were equally balanced within each fold (e.g. if 

our task contained 40% healthy and 60% diseased samples, our folds would also be 

selected to represent this distribution). For tasks that contained control variables, we 

selected folds such that samples with the same control variable value were contained 

within the same fold. For example, for a task dataset containing matching stool and oral 

samples from subjects, the Subject Identifier would be listed as the control variable and 

we should assign samples to folds such that all samples from a specific subject were 

contained within a fold. This step is crucial to avoid biasing or overfitting the training 

model; test folds should contain not only new samples, but also samples that are 

independent from those in the training set. Models were constructed using the ‘caret’ 

package (Kuhn and Others, 2008). This process was bootstrapped 100 times, and the 

mean class probabilities were used to calculate the resulting AUCs and ROCs. To 

compare classification accuracies using different reference databases, we used a similar 

procedure but held the model constant and predicted using different base OTU tables. 

This model enables comparison of a myriad of machine learning models available in the 
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‘caret’ package, and can be easily expanded to compare different OTU-picking 

algorithms, or normalization and filtering techniques. 

Publicly available web-based interface 

We expect two types of users: (1) machine-learning algorithm developers with limited 

knowledge of microbiome study designs and (2) microbiome researchers interested in 

obtaining additional datasets for meta-analysis. Generally, we expect that methods 

developers will be most interested in sweeping through the full set of prediction tasks for 

benchmarking, and hence would prefer to download a single compressed file containing 

all tasks and data. On the other hand, we expect that microbiome researchers will be more 

selective in downloading specific datasets and tasks depending on their research domain. 

Hence, researchers may prefer to browse specific details about tasks and datasets prior to 

downloading. 

  

Based on these expected use cases, we created a publicly available web-interface for 

MLRepo hosted by GitHub Pages and available at: https://knights-lab.github.io/MLRepo. 

Tasks are organized by relevant response categories (Figure 3.3A). Task pages contain 

descriptive details such as Sample Size and Response Type that are specific to the 

selected prediction task, as well as links for downloading OTU tables, taxa tables, and 

sample metadata (Figure 3.3B). Dataset pages contain important details about the entire 

dataset, including links to the original research study, as well as original metadata files 

and quality filtered sequences (Figure 3.3C). We also provide a single compressed file 

containing the entire set of available tasks (OTU tables, taxa tables, and relevant 

metadata) for download from the main home page. 

Benefits of curated microbiome-based prediction tasks 

We expect MLRepo to be beneficial for both the machine-learning community as well as 

the microbiome research community. MLRepo will be a powerful complement to UCI’s 

machine learning repository, as it will allow for benchmarking curated classification tasks 

with high-dimensional data, and hence enable the subsequent development of novel 
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algorithms for these complex datasets. Our streamlined approach in generating OTU and 

taxa tables offers a rich set of 15 datasets that microbiome researchers can use directly for 

further comparison with their own studies, for teaching and learning purposes, or for 

large meta-analyses. We expect that our provided OTU and taxa tables will also be 

beneficial for researchers with limited access to high-performance computing resources 

or bioinformatics skills necessary for processing raw sequencing data. In addition, we 

expect microbiome-specific methods development will also benefit from our repository 

prediction tasks. The subsetted samples found in each prediction task metadata file 

replaces the work of rigorously deciphering metadata and nuances from individual 

research studies. Hence, new methods, such as OTU-picking algorithms, can be evaluated 

not only on metrics such as speed and accuracy, but also based on overall impact to study 

findings. 

Comparison to similar databases 

Although a number of microbiome repositories exist, many are intended as data archival 

repositories (Hunter et al., 2014; Leinonen et al., 2011) or function as resources for 

aggregating across studies (Forster et al., 2016). Resources such as QIITA (Qiita 

Development Team) offer an extensive collection of datasets, and mock-community-

based Mockrobiota (Bokulich et al., 2016a) is well-suited for benchmarking upstream 

methods, but neither offer support for the metadata interpretation necessary for predicting 

high-level phenotypes. MLRepo differs from all of these resources in that we provide 

well-defined tasks for predicting responses from manually curated metadata and 

standardized data from published microbiome research studies. 

Case studies 

We compare the performance of three machine learning models: random forest (Breiman, 

2001), and support vector machine (Cortes and Vapnik, 1995) (SVM) with either a radial 

or linear kernel. Sweeping through available tasks with binary responses, we compare our 

models by examining receiver operating curves (ROCs) and areas under the curve (AUC) 

(Figure 3.4). Through direct comparison of ROCs, we can see that random forest 
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outperforms or ties the other two models in 21 out of the 28 tasks. The choice of kernels 

appears to have limited impact on overall mean accuracy, yet a linear kernel can perfectly 

classify penicillin-treated and vancomycin-treated mouse cecal contents when the other 

models could not; further examination of the microbial features in these samples may be 

warranted to further understand the strengths of this kernel. We also directly compared 

AUC and accuracy of the models across all tasks and, although not statistically 

significant (P=0.065 and P=0.15, respectively), found that random forest in general does 

better than the other two models (Figure 3.5A). Our results support the broad usage 

(Aagaard et al., 2012; Karlsson et al., 2013; Pasolli et al., 2016; Yatsunenko et al., 2012) 

and acceptance of random forest as a robust classifier (Knights et al., 2011b) with high-

dimensional microbiome data. 

  

We also used the classification tasks to assess the impact of reference database choice on 

classification accuracies by comparing random forest using OTUs picked with the 

Greengenes 97 database or the NCBI RefSeq Targeted Loci Project 16s project. We find 

that there is limited impact of database choice to overall classification accuracies (Figure 

3.5B). This may be due to (1) large effect sizes that are driven mainly by several well-

characterized bacterial taxa present in both databases (e.g. stool versus tongue samples), 

or (2) small effect sizes such that classification is difficult regardless of the database (e.g. 

male versus female stool). 

  

Future Work 

In the future, we expect and hope that the broader microbiome research community will 

add new datasets and prediction tasks to MLRepo. We provided instructions on our 

GitHub repository to guide users to create a fork from our repository, add the appropriate 

data and files, and update the master task and dataset lists. Users can then submit a pull 

request for our review, and if properly formatted, will be accepted and merged into the 

repository. We expect that data submissions will come from either the original 

researchers or those well-acquainted with the datasets, and hence will expect that sample 

selection and subsetting will have undergone rigorous review for prediction tasks. 
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Conclusions 

We developed MLRepo, a repository of curated microbiome datasets made available for 

the computational community, and presented several case studies for how it can be a 

valuable resource. We hope that this repository will promote the development of and 

usage of improved machine learning methods for the microbiome community. 
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Although broad-spectrum antibiotics, commonly used in western medicine, can lead to 

imbalances in the gut microbiome, this chapter builds upon the examination of other 

western exposures that may be detrimental to the gut microbiome. 

 

Introduction 

Previous work has established that diet and geographical environment are two principal 

determinants of microbiome structure and function (De Filippo et al., 2010; Febinia, 

2017; Gomez et al., 2016; Kwok et al., 2014; Obregon-Tito et al., 2015; Rothschild et al., 

2018; Schnorr et al., 2014; Yatsunenko et al., 2012). Rural indigenous populations have 

been found to harbor substantial biodiversity in their gut microbiomes, including novel 

microbial taxa not found in industrialized populations (Clemente et al., 2015; Gomez et 

al., 2016; Obregon-Tito et al., 2015; Schnorr et al., 2014; Smits et al., 2017; Yatsunenko 

et al., 2012). This loss of indigenous microbes or “disappearing microbiota” (Blaser and 

Falkow, 2009) may be critical in explaining the rise of chronic diseases in the modern 

world. Despite the frequent migration of people across national borders in an increasingly 

interconnected world, little is known about how human migration may affect intricate 

human-microbe relationships. 

 

The United States (U.S.) hosts the largest number of immigrants in the world (49.8 

million or 19% of the world’s total immigrants and approximately 21% of the U.S. 

population) (Department of Economic and Social Affairs, Population Division, 2017). 

Epidemiological evidence has shown that residency in the U.S. increases the risk of 

obesity and other chronic diseases among immigrants, with some groups experiencing up 

to a four-fold increase in obesity after 15 years (Bates et al., 2008; Cairney and Ostbye, 

1999; Goel et al., 2004; Kaplan et al., 2004; Lauderdale and Rathouz, 2000; Walker et al., 

2008). This “healthy immigrant effect” has been well-documented in Western countries 

(Antecol and Bedard, 2006), and is attributed to many complex, interacting factors, the 

effects of which vary depending on the immigrant subpopulation (Barcenas et al., 2007). 

Refugees, in particular, appear to be more vulnerable to rapid weight gain (Heney et al., 

2014; Hervey et al., 2009), with Southeast Asian refugees exhibiting the highest average 
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increases in body mass index (BMI) (Careyva et al., 2015) after relocation to the U.S. 

Minnesota is home to the highest number of refugees per capita in the U.S., and has 

experienced the largest wave of refugees during the last decade (Koumpilova, 2015). The 

Hmong, a minority ethnic group from China who also reside in Southeast Asia, make up 

the largest refugee group in Minnesota (22,033 total refugees as of 2014) (Minnesota 

Department of Health), and also form the largest centralized Hmong community in the 

U.S. (70,000 total individuals) (Pfeifer and Thao, 2013). The Karen, an ethnic minority 

from Burma, have been arriving in large numbers in more recent years (Minnesota 

Department of Health). Although the Hmong and Karen originate from different 

countries, have distinct backgrounds, and arrived in the U.S. at different times, many in 

these groups share a common path through refugee camps in Thailand; they may also 

share similar disease disks in the U.S. Refugee children from Burma exhibited the 

steepest BMI increase after relocation, compared with other refugee and non-refugee 

children (Dawson-Hahn et al., 2016); to our knowledge, disaggregated data on long-term 

health changes in ethnic Karen from Burma do not yet exist. Overweight status and 

obesity rates are highest among Hmong compared to other Asian ethnic groups in 

Minnesota (Arcan et al., 2014; Franzen and Smith, 2009; Himes et al., 1992; Mulasi-

Pokhriyal et al., 2012), and Western diet acculturation, previous exposure to food 

insecurity, and physical inactivity have been identified as contributing factors (Franzen 

and Smith, 2009; Mulasi-Pokhriyal et al., 2012; Smith and Franzen-Castle, 2012). 

 

The gut microbiome plays a critical role in host metabolism and is heavily influenced by 

an individual’s long-term diet (Hildebrandt et al., 2009; Wu et al., 2011), yet can also 

quickly respond to dramatic dietary changes (David et al., 2014; Turnbaugh et al., 

2009a). Hence, the gut microbiome serves as an important window into the consequences 

of diet and lifestyle changes associated with migration. To study the short- and long-term 

impact of migration on the microbiome, we measured gut microbiomes and dietary intake 

from Hmong and Karen immigrants and refugees (henceforth referred to as immigrants) 

across cross-sectional and longitudinal cohorts undergoing relocation to the U.S. We 

characterized gut microbiome species, strains, and functional profiles among Hmong and 
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Karen individuals still living in Thailand and after U.S. immigration. The cohort was 

stratified by BMI to include cross-sectional samples from individuals with high (≥25) and 

low (<25) BMI in both pre- and post-immigration groups. The first-generation immigrant 

(foreign-born U.S. residents) group included individuals with duration of U.S. residence 

ranging from a few days to more than 40 years. This range allowed us to test for changes 

in the gut microbiome associated with long-term residence and duration of residence. We 

then studied second-generation (born in the U.S. to first-generation immigrants) Hmong 

immigrants to determine whether the effects of U.S. immigration are compounded across 

generations by birth in the U.S. Finally, we followed a longitudinal cohort of 19 Karen 

refugees for 6 months beginning immediately before or after arrival in the U.S to measure 

the immediate short-term effects of U.S. immigration. 

 

Methods 

 
Study setting, population, and recruitment.  

Our inclusion criteria included individuals who were Hmong or Karen, female, at least 18 

years old, and either were born and are currently living in Thailand, were born in 

Southeast Asia and moved to the U.S., or were born in the U.S. but whose parents were 

born in Southeast Asia. Our inclusion criteria for controls included Caucasian females at 

least 18 years of age who were born in the U.S. and whose parents and grandparents were 

also born in the U.S. Our exclusion criteria consisted of use of any antibiotics in the 

previous 6 months, current use of probiotic supplements, known presence of 

gastrointestinal, cancer, immunodeficiency or autoimmune disorders, adults lacking 

capacity to consent, or pregnancy. Additionally, control subjects could not have traveled 

outside of the U.S. within the last 12 months. We recruited using multiple methods which 

included flyers, emails, social media, oral presentations, tabling, letters followed by 

phone calls to West Side Community Health Services (West Side) patients who met 

criteria, and by word of mouth. We recruited throughout the Minneapolis-St. Paul metro 

area at local community centers, faith-based organizations, adult education centers, health 

care centers, and health fairs. We recruited in Thailand at Khun Chang Khian (KCK), a 
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rural Hmong village located one hour from Chiang Mai city, as well as from Mae La 

(ML) Camp, a Burmese refugee camp in Tak province located on the Myanmar-Thailand 

border (Figure 4.S1). Interested subjects were then screened and interviewed privately or 

as a group, as preferred by the participants. Interviews and body measurements were 

conducted by trained Hmong and Karen community researchers and a graduate student 

researcher. This study was approved for human subject research by the University of 

Minnesota Institutional Review Board (1510S79446), and the Thailand-based portion of 

the study was additionally approved for human subject research by the Chiang Mai 

University Institutional Review Board (475/2015) and the Chiang Mai Public Health 

Office (0032.002/9930). 

 

Application of Community-based Participatory Action Research methods 

This project used a community-based participatory action research (CBPAR) approach, 

with a multidisciplinary team composed of academic researchers, Hmong and Karen 

community researchers, and staff from the Somali, Latino and Hmong Partnership for 

Health and Wellness (SoLaHmo). SoLaHmo is a multi-ethnic, community-driven 

CBPAR program of West Side Community Health Services, Inc, whose mission is to 

build upon the unique cultural strengths of ethnic communities to promote health and 

wellness through research, education and policy. All SoLaHmo members are trained in 

qualitative research processes using a previously developed training curriculum (Allen et 

al., 2011). In addition, all phases of our project were further guided by community 

advisory boards (CABs) composed of Hmong and Karen health professionals and 

community experts. The study design, recruitment methods and strategies, and 

dissemination of results were developed in partnership with both academic and 

community researchers, and through multiple discussions with the CABs. Based on 

insight from the Hmong CAB and research team members that substantially more Hmong 

women than men were relocating to U.S. in recent years, we limited our study to women. 

In Thailand, we used a modified CPBAR approach in that Thai community researchers 

were members of the communities that we worked with, and were trained with qualitative 

research methods, recruitment, and sample and data collection, but were not directly 
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involved with study design. We note that Hmong refugee camps have long been closed 

(Bureau of Population, Refugees and Migration, 2004), hence Hmong in Khun Chang 

Khian are not refugees but serve as acceptable pre-immigration representatives available 

for US-based Hmong.  

 

Cross-sectional specimen and data collection, U.S.  

Research team members obtained informed consent and conducted interviews in the 

participants’ preferred languages (English, Hmong, or Karen), and recorded participants’ 

responses onto an English paper survey (Appendix A). Weights were measured using 

standard electronic scales, heights were measured against a wall using a pre-positioned 

measuring tape, and waist circumferences were measured with a tape measure at the 

uppermost lateral border of the iliac crest (Center For Disease Control, 2014). 24-hour 

dietary recalls were conducted using a multiple pass system (Tippett et al., 1999) with 

food models and measuring cups and spoons for portion size estimations. Participants 

were provided with a stool collection kit and instructions describing how to collect a stool 

sample. Stool samples were collected into preservative (see below) and were either 

returned to the research staff by mail or were stored at room temperature for up to 5 days 

before they were collected by the research team. 

 

Longitudinal specimen and data collection, U.S.  

Procedures for consent, interviews, anthropometrics, and stool sampling were as 

described above for the cross-sectional specimen and data collection. Once per month 

over six months, 24-hour dietary recalls were conducted as described previously. Month 

1 and 6 samples were stored in a home freezer and picked up within 24 hours of stool 

collection. These samples were transported with an ice pack and immediately placed in a 

-80C freezer. Month 2-5 samples were stored in preservative (see below), mailed to the 

research team in prepaid mailers at room temperature, and placed in a -80C freezer upon 

receipt. 
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Specimen and data collection, Thailand 

Procedures for consent, interviews, anthropometrics, and stool sampling were as 

described above for the cross-sectional specimen and data collection. 24-hour dietary 

recalls and sample collections were conducted as described previously. Stool samples 

from KCK were transported on dry ice then placed in a -20C freezer for 2 days then 

transferred to a -80C freezer. Stool samples from ML were placed in a -20C freezer for 

up to 8 hours then transferred to a -80C freezer. All samples collected in Thailand were 

shipped overnight on dry ice from Thailand to the U.S., and stored in a -80C freezer in 

the U.S. 

 

Stool sample collection 

Research team members instructed participants in stool collection, using an instructional 

video, written visual instructions, and verbal reinforcement. Participants placed their 

stool sample onto a FecesCatcher (Tag Hemi VOF) and 1 gram was collected using a 

sterile swab into a 1.5 ml cryogenic tube pre-filled with 900 ul of RNALater™ and mixed 

thoroughly, (Appendix B). Larger samples (longitudinal first and last month samples) 

were collected using a Sarstedt Inc 80.9924.014/CS500 tube and scoop without mixing or 

RNALater. Large samples collected in the U.S. were aliquoted into 1.5 ml tubes with and 

without 50% glycerol upon arrival, and stored at -80C. Large samples collected in 

Thailand were stored at -80C until arrival to the U.S., at which point they were thawed 

over ice, aliquoted, and stored in the same manner.  

 

Dietary data processing workflow 

De-identified survey data was entered into an electronic spreadsheet. Foods and portions 

from 24-hour dietary recalls were entered into the USDA SuperTracker system (Britten, 

2013). Foods that were not found in the USDA database were researched individually 

(Speek et al., 1991) for macronutrient content and entered in as custom foods. 

SuperTracker macronutrient and food grouping summaries, as well as foods and their 

respective portions were downloaded directly from the SuperTracker website, or using 

custom Python (van Rossum and Drake, 2011) scripts. Foods and portions were mapped 
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to the SuperTracker and USDA databases to obtain respective food and portion 

identification numbers; food and portion identification numbers were used in tree-based 

food analysis. Custom foods not in the USDA database were manually assigned 

appropriate existing or new food identification numbers by group consensus. 

Micronutrients were excluded from dietary analyses due to the high number of custom 

foods with limited information on micronutrients. Food tree visualizations were 

generated with Graphlan (Asnicar et al., 2015). Dietary record and food item associations 

were generated using custom scripts, then visualized in Cytoscape (Shannon et al., 2003). 

 

16S sample processing and sequencing 

All fecal samples were submitted to the UMN Genomics Center for DNA extraction, 

amplification, and sequencing. 16S ribosomal rRNA gene sequences were extracted and 

amplified following the UMGC-developed protocol (Gohl et al., 2016). We trimmed and 

processed all marker-gene sequencing data for quality using SHI7 (Al-Ghalith et al., 

2018) and picked de novo operational-taxonomic units (OTUs) as follows. We first 

filtered for reads with at least 100 exact duplicates as representative sequences, and 

assigned taxonomy by alignment at 0% to the NCBI RefSeq 16s reference database 

(O’Leary et al., 2016) using the BURST (Al-Ghalith and Knights, 2017) OTU-picking 

algorithm in CAPITALIST mode, which ensures optimal alignment of sequences and 

minimizes the set of aligned reference genomes. All original sequences were then re-

aligned with BURST (Al-Ghalith and Knights, 2017) in CAPITALIST mode at 98% 

identity against this representative set, resulting in 93.54% of all available sequences 

aligned. Singleton OTUs and samples with depth less than 2,143 were removed using the 

Quantitative Insights Into Microbial Ecology (QIIME) software package (Caporaso et al., 

2010). Using QIIME, we measured within-sample biodiversity (alpha diversity) with 

rarefied OTU tables (at 2,143 sequences/sample) using whole-tree phylogenetic diversity 

(Faith, 1992) and a custom generated phylogeny constructed with the representative 

sequences using aKronyMer (Al-Ghalith and Knights, 2018). To quantify differences in 

composition between subjects, we calculated the phylogeny-based UniFrac distance 

(Lozupone et al., 2011) between all pairs of samples. To visualize between-subject 
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differences (beta diversity) and to obtain principal components for subsequent statistical 

testing, we performed dimensionality reduction using principal coordinates analysis 

(Caporaso et al., 2010). Aitchison’s distances were calculated by first imputing zeros 

from an abundance OTU table, then applying a centered log ratio transform using the 

robCompositions R package (Pawlowsky-Glahn and Buccianti, 2011). To enable tests for 

shifts in the relative abundances of Bacteroides and Prevotella, we collapsed the 

reference-based OTUs according to taxonomy at the genus level.  

 
Deep shotgun metagenomic sample processing and sequencing 

Shotgun DNA sequencing was performed on the Illumina HiSeq platform. All fecal 

samples were submitted to the UMN Genomics Center for DNA extraction, 

amplification, and sequencing. Amplification, quantification, and normalization of 

extracted DNA was performed using the Illumina NeoPrep Library System. A HiSeq 

2x125 cycle v4 kit was used to sequence samples. Sequences were identified at the 

species level via genomic alignment against a custom database created from aligning 

human samples from various public datasets against the comprehensive NCBI RefSeq 

database (Tatusova et al., 2013) release 87, and all matched bacterial species, as well as 

all species in matched representative genera, were included from NCBI RefSeq database 

(Tatusova et al., 2013) release 87. Genome coverage estimates were calculated using the 

bcov utility from BURST (Al-Ghalith and Knights, 2017). Functional annotations were 

obtained using the HUMAnN2 (Abubucker et al., 2012) pipeline with UniRef50 (Suzek 

et al., 2015). Resulting functional pathways were mapped to and colored by the top level 

categories of the MetaCyc (Caspi et al., 2008) ontology. CAzyme annotations were 

obtained using metaSPAdes (Nurk et al., 2017), filtered for scaffolds with minimum 1000 

bp, then further processed with Prokka (Seemann, 2014), dbCAN (Yin et al., 2012) with 

E-value < 1e−5, and the CAZy database (Lombard et al., 2014).  

 

Food-Microbiome Procrustes distance associations 

Procrustes: P-values are from the `vegan` implementation in function `protest ()` with 

999 permutations (performed for each of the permuted data structures). Distances plotted 
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are the Euclidean distances between food and diet samples after rotation of distance 

matrices with Procrustes. The representative Procrustes plot with permuted labels was 

chosen based on median overall Procrustes distance (M12 = square-root of 1 minus the 

sum of squares) out of 10 permuted Procrustes rotations. 

 

Predicted biosynthetic gene clusters 

Raw shotgun reads were quality controlled using SHI7 (Al-Ghalith et al., 2018) and 

aligned using BURST (Al-Ghalith and Knights, 2017) at 95% identity against a reference 

database of 21,186 putative biosynthetic gene clusters (BGC) predicted by antiSMASH 

or deposited in the MIBiG database (Blin et al., 2017; Weber et al., 2015). The per-

sample metagenomic coverage of each BGC was calculated using in-house Python and R 

code and filtered to pathways with a ratio of actual coverage to expected coverage 

(expected coverage probability is defined as 1-exp ( (N * L_read )  ⁄ L_BGC ), where N = 

number of reads, L_read = median read length, and L_BGC = BGC sequence length) of 

at least 0.75. Differentiating BGCs were identified by comparing BGC presence/absence 

frequency between the treatment groups using Fisher’s exact test with FDR correction at 

q < 0.15. To collapse homologous BGCs we used custom Python and C code to 

hierarchically cluster the pathways based on amino acid identity and open reading frame 

composition (Rashidi et al., 2018; Shields-Cutler et al., 2018; Zhang et al., 2018). Cluster 

annotations and taxonomic assignments were derived from their antiSMASH references.  

 

Mouse experiment specimen and data collection 
We thawed 2 mL of previously collected frozen human stool over ice, then added it to a 

15ml conical tube containing 3 ml of pre-reduced PBS inside of a COY anaerobic 

chamber and vortexed for 1 minute. 4-8 week-old germ-free C57BL/6 female mice were 

fasted overnight then removed from germ-free isolators and gavaged with 300 uL of 

prepared donor material. Fasting blood glucose measurements were taken with a cheek 

bleed using a StatStrip Xpress glucometer, and mice were ear punched for identification. 

Mice were subsequently placed in cages with Sani-chips™and Crink-l'Nest™ bedding, 

which have been autoclaved at 128C for 30 minutes with a 15 minute dry cycle, and with 
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nanopure drinking water which had been autoclaved in 1L pyrex bottles at 121⁰ for 2 

hours. Prior to experiment start, mice were fed a standard autoclaved chow (LabDiet 

5K67), and immediately after humanization, mice were placed on irradiated LabDiet 

5061 or Harlan TD.86489. Cages were sealed and place into an Arrowmight Maxi Seal 

IVC System, housed within a germ-free facility. Cages were changed, mice and chow 

were weighed, and pellets were collected every two weeks using sterile handling methods 

throughout the duration of the study. At study endpoints, mice body composition analysis 

was performed as previously described (Schafer et al., 2016), mice were fasted overnight, 

then euthanized using CO2 asphyxiation. Heart blood was collected immediately post-

euthanasia for fasting blood glucose tests. 

 

Histology 

The duodenum was collected into 10 mL 10% formalin and sent to the UMN 

Comparative Pathology Shared Resource, where after 24 hours, the tissue was transferred 

to 70% ethanol. 4 µm formalin-fixed, paraffin-embedded sections of tissue were 

deparaffinized and rehydrated, followed by Hematoxylin and Eosin staining. Images were 

taken using a NIKON Eclipse E 800M microscope with 10x objective, and measurements 

were made using the NIS Basic Program. 

 

Cell isolation, staining and flow cytometry 
A two-inch section of the jejunum was collected in 3% PFA, and the remainder of the 

small intestine was emptied of its contents and stored in 35 mL of CMF. Tubes were 

stored in ice during transport. Leucocyte isolation from small intestine was performed as 

previously described (Thompson et al., 2016). Briefly, for isolation of intra-epithelial 

lymphocytes (IELs) from small intestine, fecal contents were removed, and Peyer’s 

patches were excised and the gut was cut longitudinally and then into 1 cm pieces. 

Intestine pieces were incubated in 10% 1X HBSS/HEPES bicarbonate containing 15.4 

mg/100 ml dithioerythritol (30 min at 37°C, 450 rpm) to extract IEL. After separating 

IELs, gut pieces were treated further with 100 U/ml type I collagenase (Worthington 

Biochemical, Lakewood, NJ, USA) for lamina propria lymphocyte (LPL) isolation. 
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Single cell suspensions were surface-stained with antibodies to detect various leukocyte 

populations in gut. The stained samples were acquired using LSR Fortessa flow 

cytometer (BD) and analyzed with FlowJo software (Treestar). 

  

Other limitations 

Although this study will provide a cross-sectional perspective of the change in gut 

microbiomes before, immediately after, and long after migration, it is important to note 

that not all subjects recruited will have followed the same migration path. For example, 

the large wave of Hmong who arrived to the U.S. approximately 10-15 years ago are 

primarily from Wat Tham Krabok, a temple that became home to over 30,000 Hmong 

refugees after the last official Hmong refugee camp was closed in Thailand in 1992. This 

large refuge has since been closed and evacuated, therefore making it infeasible for us to 

collect representative pre-immigration samples for this group. We mitigate this by 

sampling from a rural Hmong village in northern Thailand, where resources are limited 

and living conditions are more similar to this refuge than an urban community.  

 

Results 

 
Assembly of a multi-generational Asian American immigrant cohort 

We recruited 514 healthy Hmong and Karen female individuals (aged 18-78, see 

Methods for full exclusion criteria) who either (1) were living in Thailand (HmongThai, 

KarenThai; n = 179), (2) were born in Southeast Asia and had moved to the U.S. 

(Hmong1st, Karen1st; n = 281), or (3) were born in the U.S. and whose parents were born 

in Southeast Asia (Hmong2nd; n = 54) (Figure 4.4.1A). We also recruited healthy 

Caucasian American female individuals to serve as U.S. controls (Controls; n = 36) 

(Figure 4.4.1A). We restricted the study population to females because the majority of 

recently arrived Hmong immigrants were projected to be female. Participants in each 

sample group were recruited into lean or overweight/obese body mass index (BMI) class 

stratifications (BMI < 25 or BMI ≥ 25, respectively), with the intent of obtaining similar 

sample sizes within each group (Table 4.1). Between February 2016 and March 2017, we 
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recruited and collected samples from eligible individuals throughout the Minneapolis - St. 

Paul metropolitan area in Minnesota, and at two locations in Thailand: a rural village in 

Chiang Mai province (Khun Chang Khian), and a refugee camp in Tak province (Mae 

La) (Figure 4.S1). 

 

During face-to-face enrollment, bilingual-bicultural research team members collected 

migration and medical histories (Table 4.2), anthropometrics (weight, height, waist 

circumference), 24-hour dietary recalls, and a single stool sample. A single stool sample 

was collected for 16S rRNA and metagenomic profiling of the gut microbiome. Karen 

participants who identified themselves as having arrived in the U.S. within 2 months 

were invited to participate in a longitudinal sub-study, in which 24-hour dietary recalls 

and stool samples were collected monthly for 6 months (Figure 4.4.1A). As a result, we 

enrolled 19 individuals with longitudinal samples over their first 6 to 9 months of 

residency in the U.S.. This group included 6 individuals whose initial samples were 

collected in a refugee camp in Thailand prior to relocation. As a result of our recruitment 

efforts, we collected a total of 673 stool samples comprised of 531 single and 142 

multiple time point collections. Because we stratified recruitment by a BMI threshold of 

25, examining the ratio of obese (BMI ≥ 30) to overweight (BMI between 25 and 29.9) 

individuals provides a conservative estimate of the prevalence of obesity across groups. 

Consistent with the previously observed high rate of obesity in U.S. immigrants (see 

Introduction), we see that obesity prevalence increases after a decade in the U.S. (Figure 

4.4.1B). 

 

To understand whether or not the observed changes in the gut were driven by dietary 

intake, we collected 24-hour dietary recalls from all participants, and analyzed 

macronutrient content using the United States Department of Agriculture (USDA) 

SuperTracker food record system (Britten, 2013). A total of 224 unique foods were not 

found in the SuperTracker food database, hence additional information was supplemented 

from the more comprehensive USDA Food Composition Databases (United States 

Department of Agriculture Agricultural Research Service) and published literature. We 
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considered the relatedness of individual foods when assessing the similarity of dietary 

profiles across individuals. This approach relied on a hierarchical format of unique food 

codes that were derived from the USDA’s Food Nutrient and Database for Dietary 

Studies (FNDDS). These hierarchical food codes allowed individual foods to be 

categorized into a phenetic tree format where more closely related foods are grouped 

together (Figure 4.4.1C). These groupings then allowed us to share statistical strength 

across closely related foods to complement dietary analysis of macronutrients, much in 

the way that phylogenetic beta diversity analysis complements taxonomy-based profiles 

of microbiomes. Foods reported by participants that were not found in any USDA 

database (n = 72, Table 4.3) were manually assigned new food codes and inserted into the 

hierarchical food taxonomy, allowing us to account for all foods reported by all 

participants. Using this hierarchical food tree, we observe a stark difference in the overall 

variety of foods eaten by Hmong in Thailand and second-generation Hmong, despite 

similar group sample sizes and age range (Figure 4.4.1C).  

 

U.S. immigration is associated with loss of gut microbes 

We performed amplicon-based sequencing of the 16S rRNA gene V4 region on 550 stool 

samples (one sample per participant). Principal coordinate analysis (PCoA) of 

unweighted UniFrac (Lozupone et al., 2011) distances reveal that Hmong and Karen 

ethnic groups harbor distinct microbial gut compositions regardless of country of 

residence, yet their microbiomes converge toward Caucasian American microbiomes 

after relocating to the U.S. The first two principal coordinate axes show that second-

generation Hmong and Caucasian American microbiomes share nearly identical cluster 

centroids (Figure 4.4.2A), although Caucasian American microbiomes have lower inter-

individual variation. We also find that both diversity and richness is highest in 

microbiomes from the groups in Thailand and decreases with generations in the U.S. 

(Figure 4.4.2B). As with other studies (Sze and Schloss, 2016; Turnbaugh and Gordon, 

2009), we found that lower phylogenetic richness is associated with obesity across all of 

our groups, yet the median richness of obese individuals in Thailand is still higher than 

the median richness of any lean group in the U.S. (Figure 4.4.2B). These trends persist 
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after stratification by ethnicity (Figure 4.S2). These findings suggest that both obesity and 

residency in the U.S. are independently associated with loss of gut biodiversity. 

Furthermore, we observed a dramatic and systematic loss of native bacterial operational 

taxonomic units (OTUs) among first-generation Hmong (Figure 4.4.2C). Although 7 of 

the 10 most prevalent OTUs found in HmongThai are also found at similar levels in 

Hmong1st, others such as otu1812 (Faecalibacterium prausnitzii) incur a 45% loss in 

prevalence (Fisher’s exact test, FDR-corrected q = 3.05E-14) (Table 4.4). We found 28 

OTUs (10.5% of all OTUs in 75% of HmongThai) that incurred more than a 50% loss in 

prevalence among first-generation Hmong, and more than half of them belong to the 

Prevotella genus (Table 4.4).  

 

Bacteroides strains displace Prevotella strains across generations in the U.S. 

The severe loss of overall biodiversity and native bacterial members in first-generation 

immigrants is caused by a profound taxonomic shift in the gut microbiome. We examined 

the Western-associated Bacteroides and non-Western-associated Prevotella and found a 

displacement of Prevotella with Bacteroides across generations in the U.S. (Figure 

4.4.3A). Not surprisingly, the ratio of Bacteroides to Prevotella is lowest in Thailand-

resident individuals, and highest in U.S.-born Caucasian Controls. The ratio of 

Bacteroides to Prevotella in first-generation Karen, first-generation Hmong, and second-

generation Hmong increase in a stepwise fashion. This progression corresponds with the 

time that these groups have spent in the U.S. 

 

Using deep shotgun metagenomics on 55 samples (mean 22,406,875 reads/sample) from 

Hmong in Thailand, newly arrived Karen, long-term resident Hmong (who lived in the 

U.S. for more than 30 years), and Controls, we profiled strain-level variation in 

Bacteroides and Prevotella. We aligned shotgun metagenomic sequences against a 

custom database that included 256 Bacteroides genomes and 153 Prevotella genomes. To 

minimize spurious genome alignments, we profiled only Bacteroides and Prevotella 

strains with a minimum genome coverage of 50% within at least one sample. We found 

that U.S. Controls have varied Bacteroides strain profiles, and those with Prevotella tend 
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to be limited to a single strain of P. coprii (Figure 4.4.3B). Conversely, Thailand-based 

individuals carry up to 4 strains of Prevotella, with low abundances and generally low 

genomic coverage of Bacteroides strains. There may be limited characterization of 

Bacteroides strains specific to Thailand residents available in the current reference 

genome databases, which could cause us to observe lower coverage of Bacteroides strains 

in those subjects. Long-term U.S.-resident Hmong displayed an intermediate profile, 

carrying a variety of Bacteroides strains and, in several individuals, multiple Prevotella 

strains. Our findings suggest that the increase in Bacteroides after moving to the U.S. is 

driven by both an expansion of pre-existing low-abundance strains, as there is diverse 

Bacteroides strain prevalence within the Thai-resident groups, and the acquisition of new 

U.S.-based strains shared with Control subjects. 

 

U.S. immigrants lose enzymes associated with plant fiber degradation 

We also profiled microbial functional pathways in our shotgun metagenomics samples 

(Abubucker et al., 2012) (Figure 4.S3A). In long-term-resident first-generation Hmong, 

we observed increases in relative abundances in sucrose degradation, glycerol 

degradation, glucose/xylose degradation, and glucose fermentation to lactate, suggesting 

that Hmong who have lived in the U.S. more than 30 years may consume more sugary 

foods. In Hmong in Thailand, we found an enrichment of pathways relating to the 

degradation of complex carbohydrates, which includes mannose biosynthesis, mannan 

degradation, and starch degradation (Flint et al., 2012). In order to better understand the 

potential substrates degraded by these pathways lost in U.S. immigrants, we assembled 

the deep shotgun metagenomic data into scaffolds (insert metaquast results), and 

annotated carbohydrate-degrading enzymes (CAZymes) (Lombard et al., 2014; Yin et al., 

2012), and found that observed shifts in strain-level composition and functional pathways 

were accompanied by significant shifts in several types of CAZymes. We observed 

differential abundance of 58 CAZymes across the HmongThai, Hmong1st, and Control 

groups (Mann Whitney U, FDR q < 0.05, Figure 4.4.3C). These shifts included three 

beta-glucan-targeting glycoside hydrolases (GH17, GH64, GH87) that were almost 

completely lost from the Thailand-based group to the U.S.-based groups. This loss could 
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be associated with decreased ability of the microbiota to degrade certain dietary fibers. A 

loss of GH5 and GH26 glycoside hydrolases from HmongThai to Hmong1st and U.S. 

controls indicates a loss of cellulose, beta-mannan and possible xyloglucan degradative 

potential. Beta-mannan is produced by fungi as part of the cell wall, suggesting a lower 

load of fungal gut microbiota in post-immigration individuals (Engel et al., 2012). 

Cellulose and xyloglucan are plant cell-wall components, so the loss of glycoside 

hydrolases for degrading these is another indication that the microbiota of post-

immigration individuals have lost some of their ability to degrade plant fibers (El 

Kaoutari et al., 2013). 

 

Dietary acculturation partly explains microbiome acculturation 

Across sample groups, we observed significant differences in the consumption of 

macronutrients commonly associated with a Western diet: sugars, fats, and protein. We 

find that consumption of sugars and fats are associated most significantly with residency 

in the U.S., and that protein consumption is highest among first- and second-generation 

Hmong (Figure 4.4A, Figure 4.S4). These findings suggest that new arrivals may have a 

higher preference towards high-sugar, high-fat foods, such as processed snacks, and that 

it takes longer to acculturate to eating a high-protein diet. Interestingly, total calorie 

consumption is similarly high among Karen in Thailand and U.S.-based Controls (Figure 

4.4A).  

 

Our use of a hierarchical food tree enabled approximate comparisons of common 

American foods to non-American foods, and as a result, to apply tree-based ecological 

analysis methods to the diet profiles of all subjects. PCoA of unweighted UniFrac 

(Lozupone et al., 2011) of interindividual dietary intake distances reveal distinct 

separation by sample group, and a gradient of increasing dietary acculturation along the 

first principal coordinate (Figure 4.4B). Shifts toward positive values of the first principal 

coordinate are driven by decreased consumption of rice, cooked and raw vegetables, and 

fish, and increased consumption of fruits, milk, coffee, breads, pastas, soft drinks and 

juices, processed meats, cookies, carrots, roasted beef products, and chicken (Table 4.6). 
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First- and second-generation Hmong shared similar food choices (Figure 4.4B) when 

considering hierarchical relationships of foods, which cannot be determined with 

macronutrients alone; these diet-based clusters are notably different from the groupings 

seen in the microbiome-based PCoA, where second-generation Hmong instead clustered 

closely with Controls. 

 

A bipartite network of participants and their food choices show how most individual food 

choices are shared between groups (Figure 4.S5A). Sample groups are difficult to 

delineate because of the high degree of shared foods reported across all Hmong and 

Karen groups. Similar to PCoA based on food distances, we see strong overlap between 

KarenThai and Karen1st food choices, and observe highly individualized diets in 

Controls, where several participants consumed multiple foods not reported by anyone 

else in the study. Interestingly, the vast majority of diet records from Hmong and Karen 

included white rice (572 out of 630, 90.7%), compared to only 4 of the 36 Controls 

(11.1%) (Figure 4.S5B).  

 

To understand the relationship between diet and microbiome compositions, we performed 

a permutation-based Procrustes analysis to compare distances between unweighted 

UniFrac diet and microbiome distance matrices and found strong similarity between 

variation in diets and microbiomes (P=0.001, n=999 permutations) (Figure 4.S6A). We 

validated this association by comparing per-sample Procrustes distances of the original 

distance matrices against per-sample Procrustes distances of permuted distance matrices, 

and found that the original matrices are more similar (P = 1e-10) (Figure 4.S6B). These 

Procrustes tests demonstrate that similarity of microbiome-based distances and food-

based distances is significantly better than random chance. However, constrained 

ordination of the microbiome by the first 5 principal coordinates of the diet-based PCoA 

revealed that dietary variation alone explained only a fraction (16.8%) of the total 

microbiome variation (Figure 4.4C). Altogether, we find that although both microbiome 

and dietary acculturation increases with time in the U.S., diet is not the sole contributor to 

the observed gut microbiome changes in our cohort. 
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Gut biodiversity decreases according to duration of residence in the U.S. 

In a PCoA with unweighted Unifrac microbiome-based distances, we find that time spent 

in the U.S. is significantly correlated with changes seen along the first principal 

coordinate (Figure 4.5A). Conversely, gut biodiversity, as measured by Faith’s 

Phylogenetic Diversity, is negatively correlated with PC1 (Figure 4.5B). To understand 

the relationship between diversity and time in the U.S., we stratified our analysis by 

ethnic group to account for the distinct time frames of Hmong and Karen immigration 

(over 40 years versus 10 years). We found that gut biodiversity in first-generation Hmong 

significantly decreases with time in the U.S. (Figure 4.5C), while 

controlling for BMI. Further stratification by BMI class reveals similar trends of negative 

associations, but were not significant (data not shown). We also find a weak association 

between gut biodiversity and time spent in the U.S. in first-generation Karen (Figure 

4.5C), which suggests that observable changes in biodiversity may take place after 10 

years. We acknowledge that lifestyle differences between Hmong and Karen may also be 

contributing factors. 

 

Prevotella displacement continues for more than one decade 

Over time in the U.S., first-generation gut microbiome compositions diverge from their 

Thai counterparts and converge toward Caucasian Controls (Figure 4.6A). Loss of 

biodiversity impacts beta diversity, but our findings suggest that the contributions vary 

with ethnic group and timeframe. Instead, we find that the shifts in bacterial composition 

are largely governed by the displacement of Prevotella with Bacteroides. We observe a 

highly significant and strong association of time spent in the U.S. with the ratio of 

Bacteroides to Prevotella (Figure 4.6B), and these significant associations persist after 

stratification by ethnicity and within the shorter time frame of first-generation Karen 

(Figure 4.6B inset). These findings show that changes to the dominant members of the 

gut microbiome begin during the first decade of U.S. residence, and continue for longer 

than a decade. 
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Microbiome Westernization begins within 9 months after immigration 

To understand whether changes in the gut microbiome can be detected immediately after 

relocation to the U.S., we examined the gut microbiomes of 19 newly arrived Karen in a 

longitudinal cohort. PCoA of the unweighted UniFrac distances of first and last month 

stool samples show that within six months, we can detect a significant shift in microbial 

composition along the first principal coordinate (Figure 4.S7). We also found that within 

this short time frame, all but one participant gained weight (Figure 4.7A), although 

weight gain after relocation is expected in Southeast Asian refugees (Careyva et al., 

2015). We previously reported that protein consumption was similar between Karen in 

Thailand and first-generation Karen in the larger cross-sectional study (Figure 4.S4), but 

characterizing diets longitudinally allowed us to detect a subtle but significant increase in 

protein consumption after 6 months in the U.S. (Figure 4.7B). We also previously 

reported that Hmong in Thailand consume a limited variety of foods compared with 

second-generation Hmong (Figure 4.4.1C), which suggests that living in the U.S. may 

increase exposure to or encourage consumption of diverse foods. Instead, we found that 

longitudinal Karen participants reported eating fewer kinds of foods after 6 months 

(Figure 4.7C), which indicates that it may take a longer than half a year to acclimate to 

foods available in the U.S. Within this short time frame, once again we observe the 

displacement of Prevotella by Bacteroides (Figure 4.7D), indicating that microbiome 

westernization begins immediately after arrival to the U.S. Using deep shotgun 

metagenomics with 13 samples from 6 participants, we find that Prevotella and 

Bacteroides strain profiles remain largely stable over 6 months but can sometimes result 

in drastic changes (subject highlighted in blue, Figure 4.7D). 

 

Our longitudinal sub-study includes six participants with baseline characterizations of 

their gut microbiomes prior to relocation to the U.S. (Figure 4.7F). While we found 

examples of disruption to the gut immediately after arrival (ID.273 and ID.304), we 

observed that physically relocating to the U.S. induces wide variation in gut microbial 

responses, including expansion of opportunistic pathogens (ID.305), gut disruption 

several months after arrival (ID.275), and stability (ID.274, ID.308) (Figure 4.7F). 
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Western diet and Western microbes lead to adverse health outcomes 
In order to test whether the Westernized microbiome could induce deleterious changes in 

health, we performed fecal microbiota transplantation from study subjects into germ-free 

mice. We gavaged 4-7 week-old germ-free C57BL/6 mice (n = 38) with prepared stool 

samples from Thai- (T) or U.S.-based (U) donors (selected from HmongThai and 

Hmong2nd groups, matched on age and BMI) (Figure 4.6A). After humanization, mice 

were fed either a high-fiber (H) or low-fiber (L) diet and caged by diet-donor groups. At 

the end of 8 weeks, a subset of each group was sacrificed while remaining mice were co-

housed within their diet group for an additional 2 weeks. 

 

We performed 16s rRNA gene sequencing of collected mouse pellets and found clear 

separation of microbiomes by donor and diet at the end of the study (Figure 4.6B). The 

effect of cohousing varied depended on the diet: cohousing TL and UL resulted in an 

intermediate microbiome that resembled both groups, whereas cohousing TH and UH 

shifted both microbiomes towards the UH group.  

 

We found that although low-fiber groups consistently consumed less chow throughout 

the study (Figure 4.S5), this behavior was due to their increased efficiency in 

metabolizing the low-fiber diet into energy (P=3.2e-05) (Figure 4.6C). As a result, the 

low-fiber groups exhibited increased adiposity (Figure 4.6D) and elevated blood glucose 

responses (P=0.013 and P=0.012, respectively) (Figure 4.6E). Examination of the ileal 

intraepithelial compartments revealed a donor-dependent response. We found an 

elevation of inflammatory cell subtypes, TCRγδ and CD8ααTCRαβ, in US-donor groups 

(P=0.035 and P=0.027, respectively) and observed lower levels of CD4TCRαβ in Thai-

donor groups (P=0.016) (Figure 4.6F).  

 

Discussion 

This study represents the first large cohort study of the effects of migration from a non-

Western country to a Western country on the gut microbiome. Leveraging both cross-

sectional and longitudinal cohorts of immigrants and refugees, including pre-
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immigration, first-generation immigrant, and second-generation immigrant individuals, 

allowed an unprecedented examination of microbiome resilience and response to 

migration to the U.S. In these cohorts, we observed that gut microbiome diversity, 

function, and strain composition are severely impacted by migration and that both short-

term and long-term U.S. residence as well as being born in the U.S. shifts an individual's 

microbiome along an axis toward a Westernized state. 

 

We found that U.S. immigration is associated with a loss of gut microbiome diversity. 

Diversity continues to decrease for at least a decade with time spent in the U.S., and is 

further decreased in second-generation individuals born in the U.S. We also found that 

U.S. immigrants undergo a marked loss of native gut microbiota strains, and begin 

exchanging dominant strains of Prevotella for dominant strains of Bacteroides within the 

first 9 months of arrival. This demonstrates that even a short period of residence in the 

U.S. is sufficient to induce pronounced increases, in most cases over 10-fold, in the ratio 

of Bacteroides to Prevotella. Our analysis using deep shotgun metagenomics 

demonstrated that this shift was largely due to changes in the relative abundance of extant 

strains in the immigrant gut microbiome rather than total novel strain acquisition. Beta 

diversity analysis showed that the trans-generational effects of immigration are large 

enough that, within one generation in the U.S., immigrant gut microbiomes become 

nearly indistinguishable from those of the Caucasian Controls. Metagenome assembly 

and functional annotation showed that the observed changes in bacterial strains were 

associated with dramatic post-immigration shifts in the profile of carbohydrate-active 

enzymes dominant in the gut microbiota, including a near-complete loss of certain beta-

glucanases that may indicate loss of ability to break down specific dietary fibers. 

 

In addition to studying immigrant microbiomes, we also performed extensive analysis 

and modeling of differences in dietary intake, as diet is known to be a strong driver of 

microbiome variation (Bokulich et al., 2016; David et al., 2014; Muegge et al., 2011). In 

the 24-hour diet recall data, we observed clear patterns of dietary acculturation through 

analysis of macronutrients as well as food choices. While we also observed a similar 
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trend of Westernization in microbiome and in dietary choices, we found that only a small 

amount of microbiome variation (16.8%) (Figure 4.S4C) in the microbiome is explained 

by diet.  

 

Using humanized germ-free mice, we found that a Western-associated microbiome 

induces inflammation that may be deleterious to long-term health. Using flow cytometry 

to characterize immune cell populations in the gut intra-epithelial lymphocytes we found 

that the Westernized post-immigration microbiome stimulates increased inflammatory 

responses. This includes elevated TCRγδ in mice receiving post-immigration donor 

microbiomes. Elevated TCRγδ levels have been found to exhibit cytotoxic properties and 

produce inflammatory cytokines (Olivares-Villagómez and Van Kaer, 2018), and TCRγδ 

has been elevated in models of colitis, environmental enteropathy, and celiac disease 

(Abadie et al., 2012; Brown et al., 2015; Tsuchiya et al., 2003). CD4TCRαβ cells were 

elevated in Thai donor microbiome groups, which has been found to secrete IFNγ, a 

cytokine important for clearing pathogenic bacteria from the gut (Hess et al., 1996). 

Contradicting reported TCRγδ levels, we found that CD8ααTCRαβ, considered 

immunoregulatory and protective against colitis (Denning et al., 2007; Poussier et al., 

2002), was significantly elevated in US donor microbiome groups. The levels of TCRγδ 

found at several orders of magnitude higher than its regulatory counterparts suggests a 

predominantly inflammatory intestinal environment. Although we do not observe 

differential inflammatory responses due to diet, we acknowledge that diet also has the 

potential to mediate the gut microbiome in order to induce low-grade inflammation (Cani 

et al., 2008, 2009a). 

 

This study has several limitations. The fact that dietary acculturation only explains a 

small amount of microbiome variation suggests that immigration-induced microbiome 

changes are driven by a combination of diet and other, probably complex, factors 

associated with adjustment to life in the U.S. Most of these factors are challenging to 

examine in the context of this study. These include changes in exposure to stress, 

exercise, chlorinated municipal drinking water, antibiotics, and treatment for gut 
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parasites. There is likely to be an interacting web of altered exposures due to the dramatic 

shift in lifestyle following immigration to the U.S. that affect gut microbiome taxonomy, 

function, and diversity. In addition, although we have a large cross-sectional study 

population and a unique subset with longitudinal samples, our study design does not 

allow us to test what factors associated with U.S. immigration are causing loss of 

microbiome function and diversity, nor whether the changes in microbiome are 

contributing to the high incidence of obesity in U.S. immigrants. 
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Chapter 5: Concluding remarks and future work 
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In Chapter 2, we synthesized numerous complementary sources in this review, including 

microecological studies linking antibiotics and dysbiosis, mechanistic studies linking 

specific types of dysbiosis to specific disease outcomes, and reviews of epidemiological 

studies supporting antibiotics and increased disease risk. By synthesizing these 

independent literature reviews, we identified four major types of antibiotics-related 

dysbiosis, and we have presented a model for discussing and measuring pediatric 

dysbiosis in the context of several major diseases. Our findings indicate substantial 

existing evidence for a number of causal mechanisms by which the microbiome mediates 

antibiotic-related disease risk. The primary goal of continued research in pediatric 

dysbiosis will be to gain a mechanistic understanding how antibiotics usage by children 

may disrupt normal development of the gut microbiota, and at times consequently the 

immune system, potentially leading to increased risk of diseases like obesity, diabetes, 

allergies, asthma, and inflammatory bowel disease. Future work involving large, 

longitudinal cohorts of infants followed throughout life will be necessary in directly 

implicating microbial dysbiosis in mediating the link between childhood antibiotics and 

later development of disease.  

 

In Chapter 3, we developed MLRepo, a repository of curated microbiome datasets made 

available for the computational community, and presented several case studies for how it 

can be a valuable resource. We expect that this repository will be of important use for 

machine-learning developers unfamiliar with microbiome data, educational purposes, and 

for scientists with limited access to high performance computing resources. We also hope 

that future datasets and tasks will be submitted by other researchers, and expect our 

repository to grow. Future work to transfer the repository from GitHub to a more robust 

database solution will be necessary. 

 

In Chapter 4, we studied the impact of immigration on the gut microbiome by working 

with Hmong and Karen individuals pre-immigration, post-immigration, and who were 

born in the U.S. We demonstrated that U.S. immigration is associated with profound 

perturbations to the gut microbiome, including loss of native strain diversity, changes in 
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metabolic function, and shifts from Prevotella dominance to Bacteroides dominance. 

These changes begin immediately upon arrival and continue over decades of U.S. 

residence. The loss of diversity is compounded in obese individuals and in second-

generation individuals born in the U.S. The microbiome has been shown to play a causal 

role in obesity and diabetes in animal models. Low gut microbiome diversity has been 

associated with a wide range of metabolic, infectious, and autoimmune diseases (Al-

Ghalith et al., 2015; Chang et al., 2008; Gevers et al., 2014; Karlsson et al., 2013; Le 

Chatelier et al., 2013; Montassier et al., 2016; Turnbaugh et al., 2009b). These results 

demonstrate that further study is warranted to determine whether Westernization of the 

gut microbiome in immigrants may be contributing to their increased risk of metabolic 

diseases. In addition, the special circumstances that result in the relocation of refugees to 

the U.S. often means that these groups are especially vulnerable to socioeconomic 

disparities (Table 4.2), which may have additional direct or indirect impacts on health 

outcomes. Continued efforts to follow large, diverse, longitudinal immigrant and refugee 

cohorts, including dietary and therapeutic intervention studies, will be critical for 

determining how the microbiome may potentially be modulated to protect and improve 

immigrant metabolic health (Fu et al., 2016; Snijder et al., 2017).  

 

Broader Impacts 

 
Comprehensive assessment of microbiome structure in two minority ethnic groups 

The main work in Chapter 4 focuses on two understudied at-risk ethnic groups who make 

up a large proportion of Minnesota’s Asian population. As a community-based and 

community-participatory research project, this project has been formed with equal 

partnership of both community members and academic experts. Gut microbiome research 

in the U.S. has been primarily studied in Caucasian populations, and crowded-sourced 

projects such as the American Gut Project (McDonald et al., 2018) has self-selected for 

populations who are fluent in English, can navigate the Internet, have the means to donate 

$100, etc. This project represents an extremely unique opportunity for gut microbiome 

research to reach understudied and marginal groups, and for us to introduce and spread 
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knowledge of a relatively new and cutting-edge topic to these populations. Furthermore, 

although several studies have compared populations across countries (Yatsunenko et al., 

2012), urban to rural gradients (Morton et al., 2015; Obregon-Tito et al., 2015), and 

short-term dietary interventions (David et al., 2014; O’Keefe et al., 2015), this research 

is, to our knowledge, the first to look at gut microbiomes of populations who have 

physically and permanently relocated between drastically different environments. 

  

International project spanning migratory paths of the Hmong and Karen 

Chapter 4 also transcends international borders as we worked with Hmong and Karen 

populations in the U.S. and Thailand. Thus, this work captures a comprehensive snapshot 

of how gut microbiomes differ across a rural village, refugee camp, and time-based 

integration into westernized life in Minnesota, while controlling for gender and ethnicity. 

The health of our target rural Hmong village has been documented over the last 15 years 

(Kunstadter, 2001), therefore the addition of gut microbiome analysis will be a powerful 

complement to this existing data. In addition, this study presents an unprecedented 

opportunity to work with residents of Mae La refugee camp, which is currently the 

largest refugee camp in Thailand and home to over 50,000 individuals of whom 90% are 

ethnic Karen (Banjong et al., 2003). Since 2005, nearly 100,000 refugees from Thailand 

have been resettled in the U.S. and other western countries (U.S. Department of State, 

Bureau of Population, Refugees, and Migration), hence emphasizing the relevance of our 

work for this population. The results of this study also has important implications for 

Thailand’s Hmong-Thai and Karen-Thai residents, with potential to inform future work 

in understanding how non-communicable disease risk in these populations change with 

expansion of westernization and economic development, but also in response to in-

country migration across the rural-urban gradient. 

  

Cutting-edge tools enable novel insights into microbiome analyses 

A combination of 16s rRNA amplicon sequencing, deep shotgun metagenomic 

sequencing, and targeted metabolomics will be applied to provide a comprehensive view 

of the changing gut microbiome over space and time. The amount of total data generated 
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will be on the order of hundreds of millions of sequences, requiring cutting-edge 

computational tools and techniques to identify signals and trends. The advanced 

computational methods developed for the human research study resulted in resources 

such as MLRepo that have potential to be important resources for computational 

scientists. 

  

Potential for translatable results with impact to public health in Minnesota 

Our results have the potential to transform nutritional guidance provided by clinicians 

and to be integrated permanently into the “new immigrant” core curriculum offered at 

partnering community organizations. Additionally, refugee health practices at the 

Minnesota Department of Health may be expanded to include gut microbiome analysis in 

medical examinations of new arrivals. Worksite wellness policies for Minnesota 

companies employing large numbers of Karen or Hmong employees may also be 

impacted to promote dietary fiber consumption. And importantly, prevention of obesity 

and hence diabetes, heart disease, and other obesity-related conditions in the broader U.S. 

immigrant population has tremendous potential to reduce the high economic burden of 

obesity, an estimated $147 to $210 billion a year (Finkelstein et al., 2009). 
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Tables 

Chapter 2 Tables 

 
INFECTIOUS DISEASES 

Antibiotics and 
Disease 

 (Ayres et al., 2012; Brandl et al., 2008; Buffie et al., 2012; Croswell et 
al., 2009; Noverr et al., 2004; Sekirov et al., 2008; Ubeda et al., 2010) 

Antibiotics and 
Microbiome 

 (Ayres et al., 2012; Brandl et al., 2008; Buffie et al., 2012; Croswell et 
al., 2009; Donskey et al., 2000; Noverr et al., 2004; Sekirov et al., 2008; 
Ubeda et al., 2010) 

Microbiome 
and Disease 

 (Abt et al., 2012; Asahara et al., 2001; Buffie et al., 2012; Mai et al., 
2011b; Mazmanian et al., 2008; Shu et al., 2000; Ubeda et al., 2010; 
Wang et al., 2009) 

ALLERGY, ATOPIC, AND AUTOIMMUNE DISEASES 

Antibiotics and 
Disease 

 (Droste et al., 2000; Farooqi and Hopkin, 1998; Johnson et al., 2005; 
McKeever et al., 2002; Ong et al., 2014; Russell et al., 2012; Stefka et 
al., 2014; Wickens et al., 1999) 

Antibiotics and 
Microbiome 

 (Russell et al., 2012; Stefka et al., 2014) 

Microbiome 
and Disease 

 (Abrahamsson et al., 2012; Atarashi et al., 2013; Bisgaard et al., 2011; 
Björkstén et al., 2001b; Brown et al., 2011; Cani et al., 2008; Giongo et 
al., 2011; Kalliomäki et al., 2001; Lee and Mazmanian, 2010; Lundell et 
al., 2014; Russell et al., 2012; Sellitto et al., 2012; Sjögren et al., 2009; 
Stefka et al., 2014; Valladares et al., 2010; Wen et al., 2008) 

OBESITY 

Antibiotics and 
Disease 

 (Ajslev et al., 2011; Bailey et al., 2014; Cho et al., 2012c; Cox et al., 
2014; Trasande et al., 2013) 

Antibiotics and 
Microbiome 

 (Ajslev et al., 2011; Cho et al., 2012c; Cox et al., 2014) 

Microbiome 
and Disease 

 (Ajslev et al., 2011; Cho et al., 2012c; Cox et al., 2014; Ley et al., 2006; 
Ridaura et al., 2013; Turnbaugh et al., 2009b) 

Table 2.1. References synthesizing mechanistic and epidemiological evidence linking 
antibiotics, changes in the gut microbiome, and disease.   
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Chapter 3 Tables 

 

 
Table 3.1. Dataset descriptions 
  

Project 
Name 

V 
Region 

Target 
size 

Num 
samples 

Num 
subjects 

Area Description Sequencing 
Technology 

Study 
Design 

Cho 2012 V3 177 95 47 Antibiotics Mouse fecal and cecal 
samples, Control vs. 4 
kinds of antibiotics 

454 Cross-
Sectional 

Claesson 
2012 

V4 221 168 168 Age Elderly and young 
adults 

454 Cross-
Sectional 

David 2014 V4 282 235 11 Diet Plant-based vs. 
Animal-based diet, 
Cross-over study 

Illumina 
MiSeq 

Longitudinal 

Gevers 
2014 

V4 173 1321 668 IBD Biopsies from IBD 
patients prior to 
treatment 

Illumina 
MiSeq 

Cross-
Sectional 

HMP 2012 V35 527 6407 242 Body Habitat, 
Gender 

Up to 18 body sites 
across 242 healthy 
subjects at 1-2 time 
points 

454 Cross-
Sectional 

Kostic 2012 V35 569 190 95 Colorectal 
Cancer 

Adjacent Healthy vs. 
Tumor Colon Biopsy 
Tissues 

454 Paired 

Montassier 
2016 

V56 280 28 28 Bacteremia Patients prior to 
chemotherapy who did 
or did not develop 
bacteremia 

454 Cross-
Sectional 

Morgan 
2012 

V35 569 231 231 IBD Healthy, Crohn's 
Disease, or Ulcerative 
Colitis patients 

454 Cross-
Sectional 

Turnbaugh 
2009 

V2 230 281 154 Obesity Monozygotic or 
dizygotic twin pairs 
concordant for BMI 
class, and their 
mothers 

454 Cross-
Sectional 

Wu 2011 V12 244 95 10 Diet Controlled HighFat or 
LowFat feeding on 10 
subjects over 10 days 

454 Longitudinal 

Yatsunenko 
2012 

V4 282 531 531 Geography, 
Age, Gender 

Humans of varying 
ages from the USA, 
Malawi, and Venezuela 

Illumina 
MiSeq 

Cross-
Sectional 

Ravel 2011 V12 240 396 396 Bacterial 
Vaginosis 

Vaginal samples from 
four ethnic groups 
nugent scores for 
bacterial vaginosis 

454 Cross-
Sectional 

Karlsson 
2013 

NA NA 144 144 Diabetes Patients with normal, 
impaired, or type 2 
diabetes glucose 
tolerance categories 

Illumina HiSeq  Cross-
Sectional 

Qin 2012 NA NA 134 134 Diabetes Healthy vs type 2 
diabetes Chinese 
patients 

Illumina HiSeq  Cross-
Sectional 

Qin 2014 NA NA 130 130 Cirrhosis Cirrhosis versus 
healthy 

Illumina HiSeq  Cross-
Sectional 
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Chapter 4 Tables 
Sample Group BMI < 25 BMI ≥ 25 
KarenThai 45 39 
HmongThai 42 53 
Karen1st 77 67 
Hmong1st 52 85 
Hmong2nd 19 35 
Controls 23 13 

 
Table 4.1. Sample group recruitment stratified by BMI threshold of 25.  
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 KarenThai HmongThai Karen1st Hmong1st Hmong2nd Control P 
N 84 95 144 137 54 36  
        
Age 35 (18-55) 43 (20-78) 35 (18-67) 39 (18-65) 25 (18-39) 34 (18-64) 3.60E-16 
        
Waist-to-Height 
Ratio 

0.52  
(0.37-0.71) 

0.61  
(0.47-0.92) 

0.57  
(0.38-0.71) 

0.61  
(0.4-0.83) 

0.61  
(0.4-0.87) 

0.55  
(0.44-0.9) 

1.50E-18 

        
Years in US NA NA 3  

(0.003-9.8) 
20  
(0.049-41) 

NA NA 5.80E-40 

BMI Class       5.00E-04 
Lean 45 (53.6) 42 (44.2) 77 (53.5) 52 (38) 19 (35.2) 23 (63.9)  
Overweight 30 (35.7) 37 (38.9) 51 (35.4) 54 (39.4) 16 (29.6) 4 (11.1)  
Obese 9 (10.7) 16 (16.8) 16 (11.1) 31 (22.6) 19 (35.2) 9 (25)  
        
Alcohol Use       5.00E-04 
Never 83 (98.8) 84 (88.4) 118 (81.9) 113 (82.5) 27 (50) 5 (13.9)  
Daily 0 (0) 0 (0) 3 (2.08) 0 (0) 0 (0) 0 (0)  
Weekly 0 (0) 0 (0) 2 (1.39) 6 (4.38) 9 (16.7) 10 (27.8)  
Monthly 0 (0) 5 (5.26) 3 (2.08) 7 (5.11) 11 (20.4) 13 (36.1)  
< Monthly 0 (0) 0 (0) 12 (8.33) 10 (7.3) 6 (11.1) 7 (19.4)  
Quit 1 (1.19) 6 (6.32) 5 (3.47) 0 (0) 1 (1.85) 1 (2.78)  
        
Tobacco Use       5.00E-04 
Never 73 (86.9) 92 (96.8) 130 (90.3) 135 (98.5) 48 (88.9) 28 (77.8)  
Daily 10 (11.9) 0 (0) 8 (5.56) 1 (0.73) 1 (1.85) 0 (0)  
< Monthly 1 (1.19) 1 (1.05) 1 (0.694) 0 (0) 3 (5.56) 2 (5.56)  
Quit 0 (0) 2 (2.11) 5 (3.47) 1 (0.73) 2 (3.7) 6 (16.7)  
        
Highest Education       5.00E-04 
None 16 (19) 0 (0) 0 (0) 4 (2.92) 0 (0) 0 (0)  
ESL 0 (0) 0 (0) 96 (66.7) 14 (10.2) 0 (0) 0 (0)  
< HS 38 (45.2) 34 (35.8) 18 (12.5) 25 (18.2) 1 (1.85) 0 (0)  
HS 24 (28.6) 9 (9.47) 23 (16) 31 (22.6) 8 (14.8) 1 (2.78)  
College 2 (2.38) 4 (4.21) 0 (0) 41 (29.9) 38 (70.4) 10 (27.8)  
Graduate School 4 (4.76) 0 (0) 2 (1.39) 12 (8.76) 6 (11.1) 25 (69.4)  
        
Birth Location       5.00E-04 
Refugee Camp 6 (7.14) 2 (2.11) 32 (22.2) 31 (22.6) 0 (0) 0 (0)  
Rural 77 (91.7) 93 (97.9) 110 (76.4) 101 (73.7) 1 (1.85) 1 (2.78)  
Urban 1 (1.19) 0 (0) 2 (1.39) 3 (2.19) 53 (98.1) 34 (94.4)  
        
Medical Assistance NA NA 119 (82.6) 60 (43.8) 15 (27.8) 2 (5.56) 5.00E-04 
        
Public Housing NA NA 20 (13.9) 20 (14.6) 9 (16.7) 4 (11.1) 0.92 
        
Children Receives 
Free Lunch 

NA NA 89 (61.8) 54 (39.4) 5 (9.26) 3 (8.33) 5.00E-04 

 
 
Table 4.2. Sample Group Characteristics.  
All values are represented as mean (min - max). HS = High School; ESL = English as a 
Second Language; < = less than. Note that all participants are female, for reasons already 
noted. 
 
  



 72 

 
Acacia Leaves Cha om  M 150 
Asia Mix Milk Candy 
Banana Flower Naked Green Juice 
Banana Trunk Nature Valley Peanut Butter Cup 
Banh Mi Vietnamese Pork Sandwich  Pacific Soup Sweet Potato Masala 
Beijing Beef Pad Kraprow 
Birdy Thai Coffee  Pediasure 
Chili Paste Pork Skin 
Djenkol Bean Protein Powder 
Dried Fish Soup Pumpkin Leaves 
Dried Fried Fish Raising Canes 3 box combo no drink  
Egg Noodles Yellow  Rambutan 
Ei Kyar Kway  Rambutan canned  
Ellse Roselle Leaves 
Exo Protein Bar Schaut Thee Zay Byar 
Fish Paste Sesbania 
Fish Soup Shrimp Paste 
Gourd Skinny Cow Chocolate Bar 
Green Max Yams and Multi Grain Cereal Snake Loofah 
Halawa Spinach Smoothie 
Hmong Sausage Sweet Thai Chili Sauce 
Hon Tsai Tai Tapioca 
Jack Fruit Taro Leaf 
Khao Poon  Thai Glass Noodle Salad 
Kaw Naw Thai Northern Sausage 
Khao Soy Soup Thai Papaya Salad 
Khao Pia Thai Tapioca Dessert with coconut  
Larb Moo Tomato Curry 
Lead Tree Veggie Fritters 
Lead Tree Pod Vietnamese Sausage 
Lean 25 Smoothie Voiz Cracker Milk  
Leek and Potato Soup Water Convolvulus Water Spinach  
Sin Tone Ma Nwe  Wheat Powder and Sugar 
Longan Wing Bean 
Loofah Yakult 

Luna Protein Bar 
Zesty Chicken and Black Bean Salad 
Bowl Starbucks  

 
Table 4.3. Foods that were individually researched, then entered as custom foods 
into SuperTracker and assigned a unique identifier for the food tree.  
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OTUID q diff-mean-prevalence Taxonomy 
220 6.84E-02 0.051 t__Prevotella copri DSM 18205 
553 2.05E-01 0.029 Enterobacteriaceae 
899 1.18E-01 0.036 Blautia faecis 
921 3.85E-02 0.058 Hungatella effluvii 
1175 7.26E-01 0.011 Romboutsia timonensis 
58 5.05E-01 -0.011 Faecalibacterium prausnitzii 
75 3.26E-01 0.034 Faecalibacterium prausnitzii 
12 5.70E-01 0.023 Gemmiger formicilis 
1611 2.46E-04 0.165 Clostridium 
1812 3.05E-14 0.456 Faecalibacterium prausnitzii 
267 2.76E-01 0.038 t__Prevotella copri DSM 18205 
394 6.58E-01 -0.014 t__Bacteroides vulgatus ATCC 8482 
543 7.51E-02 0.068 Enterobacterales 
818 4.04E-01 0.031 Blautia luti 
909 2.76E-01 0.038 Dorea formicigenerans 
936 5.70E-01 0.023 Blautia 
1276 1.81E-02 0.103 Faecalibacterium prausnitzii 
1667 8.13E-01 0.013 [Eubacterium] hallii 
1773 4.60E-01 0.035 Eubacterium 
1845 9.16E-06 0.224 Faecalibacterium prausnitzii 
1905 2.89E-09 0.337 Faecalibacterium prausnitzii 
455 1.39E-03 0.148 t__Parabacteroides distasonis ATCC 8503 
614 8.13E-01 0.013 Butyricicoccus 
63 1.43E-06 0.254 Faecalibacterium prausnitzii 
71 6.96E-03 0.118 Faecalibacterium prausnitzii 
754 8.13E-01 0.013 Anaerostipes hadrus 
806 6.26E-01 0.020 t__Blautia obeum ATCC 29174 
822 2.86E-02 0.096 Blautia obeum 
1643 1.64E-05 0.230 Clostridiales 
1890 9.39E-06 0.238 Faecalibacterium prausnitzii 
20 7.98E-04 0.169 Subdoligranulum variabile 
832 8.02E-01 -0.013 Fusicatenibacter saccharivorans 
884 4.00E-02 0.093 Lachnoclostridium 
1200 7.38E-02 0.091 Intestinibacter bartlettii 
1552 6.84E-01 0.029 Erysipelotrichaceae 
1888 2.45E-08 0.337 Faecalibacterium prausnitzii 
3761 2.10E-03 0.160 Blautia 
881 6.84E-01 0.021 Lachnoclostridium 
1458 2.47E-01 0.065 Clostridiales 
1453 6.86E-04 0.190 Oscillospiraceae 
3283 1.09E-03 0.182 Blautia 
427 6.49E-01 -0.021 Bacteroides 
576 3.35E-01 0.057 t__Haemophilus parainfluenzae ATCC 33392 
828 1.77E-01 0.073 Fusicatenibacter 
1809 5.48E-13 0.504 Faecalibacterium prausnitzii 
1652 5.90E-01 0.031 Lactobacillus rogosae 
1728 4.85E-01 -0.032 Roseburia faecis 
1956 5.96E-08 0.354 Faecalibacterium 
383 9.97E-03 0.149 Alistipes shahii 
43 1.19E-07 0.338 Faecalibacterium prausnitzii 
929 2.37E-02 0.125 Hungatella 
1672 5.11E-01 -0.036 [Eubacterium] hallii 
1709 8.23E-02 0.099 t__Roseburia intestinalis L1-82 
1715 4.87E-01 0.044 t__Roseburia hominis A2-183 
1846 1.21E-06 0.315 Faecalibacterium prausnitzii 
2541 1.39E-08 0.386 t__Prevotella copri DSM 18205 
285 6.20E-05 0.251 t__Prevotella copri DSM 18205 
42 1.21E-06 0.315 Faecalibacterium prausnitzii 
4334 5.96E-02 0.107 Blautia 
738 2.08E-01 -0.052 Actinomyces odontolyticus 
856 7.96E-04 0.203 Clostridiales 
886 5.38E-03 0.171 Ruminococcus 
895 2.18E-01 0.075 Lachnoclostridium 
953 6.98E-01 -0.020 Bacteroides xylanolyticus 
1283 3.04E-02 -0.080 Streptococcus 
1288 3.78E-01 -0.048 Streptococcus 
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1752 2.29E-02 0.145 t__Ruminococcus faecis JCM 15917 
930 1.28E-01 0.097 Hungatella 
1277 1.41E-01 0.094 Faecalibacterium prausnitzii 
3910 2.55E-01 0.078 Blautia 
4372 7.98E-04 0.225 Faecalibacterium prausnitzii 
743 5.43E-02 0.127 Tyzzerella 
771 3.33E-01 0.070 Lachnoclostridium 
1045 6.51E-01 0.034 Collinsella aerofaciens 
1084 5.45E-01 0.042 Collinsella aerofaciens 
1595 3.05E-02 0.150 Phascolarctobacterium succinatutens 
1463 1.54E-01 0.100 Oscillibacter 
1786 3.08E-02 0.141 Eubacterium 
2346 4.46E-08 0.397 t__Prevotella copri DSM 18205 
3924 2.70E-01 0.075 Blautia 
435 2.04E-01 -0.065 t__Bacteroides xylanisolvens XB1A 
534 1.54E-01 0.092 Desulfovibrio 
9 1.71E-09 0.447 Gemmiger formicilis 
928 8.23E-02 0.117 Hespellia 
1863 3.11E-03 0.206 Faecalibacterium prausnitzii 
1986 9.06E-09 0.432 Faecalibacterium prausnitzii 
2571 5.00E-10 0.474 t__Prevotella copri DSM 18205 
664 4.53E-01 0.056 Acutalibacter 
954 5.54E-01 0.048 Bacteroides xylanolyticus 
962 9.15E-01 0.014 Coprococcus catus 
1252 1.37E-04 0.281 Gemmiger formicilis 
1452 8.03E-05 0.290 Oscillibacter 
1523 8.44E-03 0.188 Holdemanella biformis 
23 6.26E-01 -0.040 Faecalibacterium 
1922 2.84E-06 0.349 Faecalibacterium prausnitzii 
1957 8.55E-07 0.374 Faecalibacterium 
1971 1.86E-02 0.171 Faecalibacterium 
2569 6.34E-11 0.510 t__Prevotella copri DSM 18205 
411 6.26E-01 -0.040 Bacteroides uniformis 
4326 8.44E-03 0.188 t__[Eubacterium rectale] ATCC 33656 
940 3.77E-01 0.070 Blautia 
95 8.03E-05 0.290 Faecalibacterium prausnitzii 
1660 4.17E-02 0.152 t__[Eubacterium] eligens ATCC 27750 
1725 6.45E-03 0.204 t__[Eubacterium rectale] ATCC 33656 
1891 1.66E-04 0.281 Faecalibacterium prausnitzii 
2337 8.84E-08 0.418 t__Prevotella copri DSM 18205 
283 1.26E-08 0.452 t__Prevotella copri DSM 18205 
3963 3.89E-01 0.067 Blautia 
4830 3.38E-07 0.392 [Eubacterium] hallii 
4880 3.29E-05 0.315 t__[Eubacterium rectale] ATCC 33656 
503 1.86E-01 0.101 t__Parabacteroides merdae ATCC 43184 
798 5.77E-02 0.144 Ruminococcus faecis 
905 1.05E-01 0.118 Clostridiales 
1206 2.04E-07 0.411 Terrisporobacter petrolearius 
1402 3.24E-01 0.081 Veillonella 
1688 3.32E-02 0.159 t__Senegalimassilia anaerobia JC110 
1939 1.19E-07 0.419 Faecalibacterium prausnitzii 
1951 1.19E-07 0.419 Faecalibacterium prausnitzii 
1984 7.01E-14 0.619 Faecalibacterium prausnitzii 
2325 3.68E-11 0.541 t__Prevotella copri DSM 18205 
255 8.23E-02 0.133 t__Prevotella copri DSM 18205 
3282 7.13E-11 0.532 Dorea longicatena 
3760 4.38E-06 0.359 Dorea longicatena 
4134 7.36E-03 0.203 Collinsella aerofaciens 
4786 1.29E-05 0.341 Lactobacillus rogosae 
773 6.59E-01 -0.031 Lachnoclostridium 
918 6.84E-01 0.038 Blautia obeum 
1033 2.66E-01 0.087 Collinsella aerofaciens 
1086 5.53E-01 -0.045 Collinsella aerofaciens 
1217 1.21E-02 0.201 Sutterella 
1442 5.88E-04 0.271 Clostridium 
2031 1.38E-04 0.307 Faecalibacterium prausnitzii 
208 1.64E-06 0.386 t__Prevotella copri DSM 18205 
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2106 9.05E-06 0.359 Faecalibacterium prausnitzii 
248 1.83E-08 0.465 t__Prevotella copri DSM 18205 
2513 1.22E-07 0.429 t__Prevotella copri DSM 18205 
2545 1.08E-09 0.508 t__Prevotella copri DSM 18205 
2788 3.05E-14 0.640 t__Prevotella copri DSM 18205 
3285 1.46E-04 0.298 Collinsella aerofaciens 
3773 1.46E-04 0.298 Faecalibacterium prausnitzii 
3929 4.88E-02 0.157 Blautia 
3959 9.07E-04 0.263 Blautia 
4112 1.22E-07 0.429 Collinsella aerofaciens 
809 5.53E-03 0.219 [Clostridium] glycyrrhizinilyticum 
917 1.18E-01 0.122 Clostridiales 
1078 4.24E-01 0.067 Collinsella aerofaciens 
1085 9.26E-01 -0.013 Collinsella aerofaciens 
1849 3.35E-12 0.591 Faecalibacterium prausnitzii 
227 2.16E-06 0.387 t__Prevotella copri DSM 18205 
2349 1.21E-16 0.707 t__Prevotella copri DSM 18205 
2462 4.25E-08 0.458 t__Prevotella copri DSM 18205 
302 4.25E-08 0.458 t__Prevotella copri DSM 18205 
400 4.48E-01 -0.058 Bacteroides dorei 
437 5.57E-01 -0.049 Bacteroides ovatus 
4371 3.16E-10 0.529 Faecalibacterium prausnitzii 
69 4.55E-04 0.280 Faecalibacterium prausnitzii 
938 9.26E-01 0.013 Blautia 
1332 9.97E-02 0.135 Flintibacter 
1466 5.59E-02 0.162 Oscillibacter 
1813 1.28E-06 0.406 Faecalibacterium prausnitzii 
1909 5.12E-11 0.568 Faecalibacterium prausnitzii 
1987 9.78E-08 0.451 Faecalibacterium prausnitzii 
202 2.46E-08 0.478 t__Prevotella copri DSM 18205 
2121 1.77E-04 0.316 Faecalibacterium prausnitzii 
2345 7.08E-14 0.649 t__Prevotella copri DSM 18205 
2348 1.11E-15 0.694 t__Prevotella copri DSM 18205 
2459 1.20E-05 0.370 t__Prevotella copri DSM 18205 
2810 1.23E-17 0.739 t__Prevotella copri DSM 18205 
4060 6.86E-09 0.496 Clostridiales 
450 6.70E-03 0.226 t__Parabacteroides distasonis ATCC 8503 
4496 2.01E-12 0.604 Clostridiales 
524 1.30E-05 0.361 t__Prevotella copri DSM 18205 
1178 5.01E-03 0.243 Romboutsia timonensis 
1072 3.61E-01 0.088 Collinsella aerofaciens 
1461 1.04E-01 0.142 Oscillospiraceae 
1616 5.92E-02 0.161 Clostridium 
1767 9.26E-01 -0.013 Blautia 
1870 5.94E-11 0.571 Faecalibacterium prausnitzii 
1970 5.68E-04 0.288 Faecalibacterium 
201 8.87E-09 0.498 t__Prevotella copri DSM 18205 
221 4.72E-06 0.389 t__Prevotella copri DSM 18205 
2354 2.81E-06 0.398 t__Prevotella copri DSM 18205 
2465 1.88E-07 0.453 t__Prevotella copri DSM 18205 
2653 2.81E-06 0.398 t__Prevotella copri DSM 18205 
2705 3.19E-11 0.580 t__Prevotella copri DSM 18205 
3840 7.86E-02 0.151 Dorea longicatena 
3876 4.40E-02 0.170 Dorea formicigenerans 
4115 7.86E-02 0.151 Collinsella aerofaciens 
666 9.26E-01 0.015 Ruminococcus bromii 
758 7.10E-01 0.042 Ihubacter 
1076 8.18E-01 0.029 Collinsella aerofaciens 
1146 3.69E-01 0.085 Thermoactinomycetaceae 
1548 6.29E-02 0.159 Turicibacter sanguinis 
1597 2.81E-06 0.408 Phascolarctobacterium succinatutens 
1766 3.02E-11 0.593 Coprococcus 
1819 8.53E-09 0.510 Gemmiger formicilis 
1835 4.88E-05 0.353 Faecalibacterium prausnitzii 
1883 4.88E-06 0.399 Faecalibacterium prausnitzii 
1999 8.23E-02 0.149 Faecalibacterium prausnitzii 
2071 2.81E-06 0.408 Faecalibacterium prausnitzii 
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2338 1.71E-09 0.538 t__Prevotella copri DSM 18205 
4146 4.48E-01 0.075 Collinsella aerofaciens 
432 8.13E-01 -0.026 Bacteroides fragilis 
4328 1.44E-03 0.279 t__Ruminococcus faecis JCM 15917 
4911 1.38E-04 0.334 Faecalibacterium prausnitzii 
52 1.19E-07 0.464 Faecalibacterium prausnitzii 
5389 3.10E-08 0.491 Faecalibacterium prausnitzii 
848 4.60E-02 0.177 Dorea longicatena 
949 6.29E-02 0.159 Hungatella 
1049 8.19E-01 0.025 Collinsella aerofaciens 
1145 6.00E-03 0.241 Thermoactinomycetaceae 
1123 1.53E-04 0.335 Blautia faecis 
1262 6.00E-03 0.241 Parasutterella excrementihominis 
1771 4.88E-02 0.175 t__[Eubacterium rectale] ATCC 33656 
1848 3.02E-05 0.372 Faecalibacterium prausnitzii 
1916 9.99E-06 0.391 Faecalibacterium prausnitzii 
1928 6.64E-08 0.485 Faecalibacterium prausnitzii 
1950 2.46E-04 0.325 Faecalibacterium prausnitzii 
2009 1.81E-02 0.213 Faecalibacterium prausnitzii 
3554 3.02E-05 0.372 t__[Eubacterium rectale] ATCC 33656 
3950 1.13E-01 0.147 Blautia 
4136 2.46E-04 0.325 Collinsella aerofaciens 
4151 3.61E-02 0.185 Collinsella aerofaciens 
4327 9.99E-06 0.391 Roseburia faecis 
4439 2.93E-06 0.419 Faecalibacterium prausnitzii 
6447 6.64E-08 0.485 Subdoligranulum variabile 
14 4.55E-04 0.316 Gemmiger formicilis 
1467 7.04E-04 0.307 Oscillibacter 
1473 1.81E-03 0.278 Sporobacter 
2081 9.84E-07 0.449 Faecalibacterium prausnitzii 
219 5.02E-07 0.459 t__Prevotella copri DSM 18205 
2317 2.48E-09 0.544 Blautia 
2406 1.61E-12 0.649 t__Prevotella copri DSM 18205 
3626 3.34E-06 0.421 Lactobacillus rogosae 
3820 4.59E-01 0.079 Fusicatenibacter saccharivorans 
3884 2.72E-02 0.202 Hungatella effluvii 
4155 6.35E-01 0.050 Collinsella aerofaciens 
4515 1.83E-08 0.516 Lachnospiraceae 
744 1.63E-04 0.345 Tyzzerella 
783 8.92E-02 0.155 t__[Eubacterium rectale] ATCC 33656 
1486 1.42E-02 0.230 Sporobacter 
1741 7.29E-01 0.037 t__[Eubacterium rectale] ATCC 33656 
1958 3.13E-07 0.470 Faecalibacterium 
224 7.53E-08 0.499 t__Prevotella copri DSM 18205 
2441 4.20E-08 0.509 t__Prevotella copri DSM 18205 
2497 3.13E-07 0.470 t__Prevotella copri DSM 18205 
2542 1.69E-12 0.653 t__Prevotella copri DSM 18205 
2543 3.33E-11 0.615 t__Prevotella copri DSM 18205 
2628 1.34E-07 0.490 t__Prevotella copri DSM 18205 
2656 4.40E-09 0.547 t__Prevotella copri DSM 18205 
3307 2.16E-09 0.557 t__Prevotella copri DSM 18205 
3631 2.05E-05 0.393 [Eubacterium] hallii 
3790 7.85E-04 0.307 t__Blautia obeum ATCC 29174 
3897 6.29E-05 0.374 Blautia 
3905 2.01E-02 0.220 Blautia 
4107 7.85E-04 0.307 Collinsella aerofaciens 
4148 2.01E-02 0.220 Collinsella aerofaciens 
423 8.18E-01 -0.031 t__Bacteroides stercoris ATCC 43183 
4324 5.16E-04 0.316 t__Roseburia inulinivorans DSM 16841 
4337 4.75E-04 0.326 Anaerosporobacter 
772 1.42E-02 0.230 Lachnoclostridium 
857 2.90E-04 0.335 Clostridiales 
984 1.98E-06 0.441 Prevotella copri 
985 7.00E-06 0.413 Prevotella 

 
Table 4.4. OTU prevalences in HmongThai and Hmong1st. Related to Figure 2. 
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P1 Prevotella_stercorea_DSM_18206_Scfld0 
P2 Prevotella_copri_strain_Indica_contig00001 
P3 Prevotella_copri_DSM_18205_Scfld26 
P4 Prevotellamassilia_timonensis_strain_Marseille-P2831 
B1 Bacteroides_vulgatus.1cell.HGAP3_contig1 
B2 Bacteroides_stercoris_ATCC_43183_Scfld_02_16 
B3 Bacteroides_finegoldii_DSM_17565_Scfld32 
B4 Bacteroides_uniformis_str._3978_T3_i_gbf3978T3i.contig.0 
B5 Bacteroides_massiliensis_B84634_=_Timone_84634_=_DSM_17679_=_J

CM_13223_strain_DSM_17679_aczJl-supercont1.1 
B6 Bacteroides_dorei_CL02T12C06_supercont1.1 
B7 Bacteroides_caccae_CL03T12C61_supercont1.1 
B8 Bacteroides_caccae_strain_2789STDY5834946 
B9 Bacteroides_intestinalis_DSM_17393_B_intestinalis-2.0.1_Cont607 

 
Table 4.5. NCBI Genome IDs of Bacteroides and Prevotella strains. Related to 
Figure 3. 
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Food Item q-value p-value r 

 Cooked cereals rice 7.29e-315 2.52e-316 -0.96 

 Fruits excluding berries 3.12e-28 2.15e-29 0.45 

 Milk fluid 2.82e-12 2.91e-13 0.30 

 Coffee 2.58e-07 3.71e-08 0.23 

 Other vegetables cooked 2.58e-07 4.45e-08 -0.23 

 White breads rolls 7.71e-07 1.60e-07 0.22 

 Mixtures mainly grain pasta or bread 2.15e-06 5.18e-07 0.21 

 Finfish 2.80e-06 7.72e-07 -0.21 

 Soft drinks carbonated 3.60e-05 1.12e-05 0.19 

 Other vegetables raw 7.46e-05 2.57e-05 -0.18 

 Citrus fruits 8.43e-05 3.20e-05 0.18 

 Frankfurters sausages lunchmeats meat spreads 8.70e-05 3.60e-05 0.18 

 Carrots 2.40e-04 1.07e-04 0.16 

 Chicken 1.14e-03 5.51e-04 0.15 

 Beef roasts stew meat corned beef beef brisket 
sandwich steaks 

1.86e-03 9.61e-04 0.14 

 Fruit juices excluding citrus 2.18e-03 1.21e-03 0.14 

 Cookies 2.18e-03 1.28e-03 0.14 

 
Table 4.6. Foods (summarized at level 3) that are significantly correlated with PC1 
of the diet-based unweighted Unifrac PCOA (q < 0.01). Related to Figure 4. 
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Figures 

Chapter 2 Figures 

 
 
Figure 2.1. Disease model of host-microbiome development.  
Disease classes are associated with cascading dysbiosis types, with important dependencies on host-
microbiome development. Note that disease classes and dysbiosis types are not necessarily mutually 
exclusive. The proposed mechanisms presented are supported by extensive evidence in the literature, both 
from mechanistic studies and from epidemiological surveys. Due to the very large number of references, 
the citations represented in this figure can be found in Table 2.1. 
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Figure 2.2. Trajectories for infant recovery after antibiotic exposure.  
(A) Infant gut microbiomes develop rapidly and experience large changes during infancy before becoming 
indistinguishable from adult microbiomes by age 2. Dysbiosis in infants can displace (no recovery) or delay 
(slow recovery) development on the normal growth trajectory. (B) Samples were obtained from a single 
infant over time (Koenig et al., 2011), and microbiome distance (Bray-Curtis) to self at 2 years old was 
plotted over time. Fecal samples collected immediately after antibiotics are denoted in blue. A smoothing 
spline (in light blue) reveals a noticeable change in trajectory of development after use of antibiotics, 
mirroring the deviation in trajectory predicted in (A). 
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Figure 2.3. Percent decrease in gut microbiome biodiversity across studies with 
different antibiotic exposures.  
All fecal samples were collected 1 week after antibiotic course was completed, except where noted by 
subscripts. The Dethlefsen 2011 study included three subjects (A, B, C) who received two courses 6 
months apart. DSample taken during antibiotic treatment; 4Sample taken 4 weeks after antibiotic 
completion; 8Sample taken 8 weeks after antibiotic completion (Dethlefsen and Relman, 2011; Dethlefsen 
et al., 2008; Fouhy et al., 2012; Robinson and Young, 2010; Russell et al., 2012; Tanaka et al., 2009). 
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Figure 2.4. Predicted Microbiome Maturity Index (MMI).  
The predictive MMI for a given child is compared to the true age of that child. The MMI was predicting 
using random forests regression algorithm trained on the microbiome compositions and true ages of all 
children except for one being predicted. True age was predicted to within ± 1.3 months (standard deviation 
of the predicted error), demonstrating the feasibility of modeling the maturation of the gut microbiota as a 
predictable process across individuals. Microbiome samples were obtained from children living in the USA 
(Yatsunenko et al., 2012). 
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Chapter 3 Figures 

 
Figure 3.1. Workflow of data and website generation. 
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Figure 3.2. Website screenshots of MLRepo homepage, task, and dataset pages. 
  

A
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Figure 3.3. ROCs comparing random forest and SVM with different kernels. 
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Figure 3.4. ROCs comparing NCBI RefSeq and Greengenes 97 databases. 
  

1 bacteremia vs no bacteremia 13 low vs high nugent category
2 high fat vs low fat diet 14 healthy vs cd, stool
3 chlortetracycline vs control, cecal 15 healthy vs uc, stool
4 chlortetracycline vs control, fecal 16 malawi vs venezuela, adults only
5 penicillin vs vancomycin, cecal 17 male vs female, usa
6 penicillin vs vancomycin, fecal 18 us vs malawi, adults only
7 elderly vs young 19 animal vs plant diet, last diet day
8 control vs cd, ileum 20 gastrointestinal vs oral
9 control vs cd, rectum 21 stool vs tongue
10 male vs female, stool 22 subgingival vs supragingival plaque 
11 white vs black, vaginal 23 healthy vs tumor biopsy, paired
12 black vs hispanic, vaginal 24 lean vs obese, mz/dz/mom 
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Figure 3.5. Summary statistics of framework and database comparisons.  
(A) AUCs presented as ratio of RF AUC to SVM AUC. (B) AUCs presented as ratio of RefSeq database 
AUC to Greengenes database AUC. 
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Chapter 4 Figures 

 
Figure 4.1. Assembly of a multi-generational Asian American cohort, while 
accounting for BMI and diet 
(A) Experimental design for cross-sectional and longitudinal cohorts. (B) Ratios of overweight-to-obese 
individuals across sample groups and over time in the U.S., separated by ethnicity due to differences in 
time in years. Sample sizes are not evenly distributed across time in the U.S. (C) Hmong in Thailand (n = 
43) and second-generation Hmong (n = 41) (ages 20-40) diet diversity, as seen across tree-based food 
items. Bars denote unique foods, with prevalence of foods reported averaged within HmongThai or 
Hmong2nd and displayed as a gradient. Items highlighted in red denote the most prevalent vegetables, 
sweets and beverages, grains, and meats reported within sample groups. Full descriptions of highlighted 
foods: Coffee, brewed, regular; Carbonated citrus fruit drink; Chinese cabbage or Bok Choy family, raw; 
Rice, white, no salt or fat added; Pork chop, broiled, baked, or grilled, lean only eaten; Chicken breast, 
roasted, skin not eaten. 
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Figure 4.2. Loss of diversity and native bacterial taxa with time in the U.S.  
(A) PCoA (unweighted UniFrac) of gut bacterial communities reveals that phylogenetic variation is 
strongly explained by sample group (ANOSIM R=0.25, P=0.001). 95% standard error ellipses are shown 
around HmongThai, KarenThai, Hmong2nd, and Controls. (B) Alpha diversity of obese and lean 
individuals across sample groups, in Shannon’s Diversity index and Faith’s Phylogenetic Distance (PD). P-
values denote significantly different groups using pairwise tests of sample groups with pooled BMI classes 
(Tukey’s HSD, α = 0.05). Using a two-way ANOVA analysis with BMI class and sample group as 
covariates, we found that obesity is significantly lower across all groups (P = 0.0044). (C) Prevalence of 
operational taxonomic units (OTUs) in HmongThai and Hmong1st, sorted by prevalence in HmongThai 
and by richness within sample group. OTUs shown are found in > 75% of HmongThai samples (See Table 
4.4). 
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Figure 4.3. Bacteroides and Prevotella strain diversity and abundances 
(A) Ratio of Bacteroides to Prevotella relative abundances, log transformed (B/P). Significant contributions 
from covariates that define the sample groups classes: Resident.Continent, P=3.4e−13; Birth.Continent, 
P=0.00085; Ethnicity, P=5.5e−12 (unbalanced two-way ANOVA). (KT=KarenThai; HT=HmongThai; 
K1=Karen1st; H1=Hmong1st; H2=Hmong2nd; C=Controls). (B) Bacteroides and Prevotella strain 
diversity in 44 samples across HmongThai, Hmong1st (who have lived in the U.S. for more than 30 years), 
and Controls. Strains were selected if coverage > 50% in at least one sample. Hierarchical clustering of 
strains and samples within group is based on relative abundances and coverage < 1% of a strain within 
person is considered not present (not plotted). See Table 4.5 for strain names. (C) CAZymes with 
significantly different relative abundances among HmongThai, Hmong1st (who have lived in the U.S. for 
more than 30 years), and Controls (Mann Whitney U test, FDR-corrected q < 0.05).  
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Figure 4.4. Dietary acculturation is detectable using novel food tree and partially 
explains microbiome variation 
(A) Comparison of macronutrients consumption levels across sample groups. Ethnicity is significantly 
associated with calories (P=3.4e−05), sugars (P=0.00023), fat (P=1.3e−07), protein (P=3.2e−07), whereas 
current continent of residency is associated with sugar (P=1.3e−16), fat (P=7.1e−24), and protein 
consumption (P=5.7e−05), and birth continent is only associated with Fat consumption (P=0.0081) 
(unbalanced two-way ANOVA). (HT=HmongThai; KT=KarenThai; H1=Hmong1st; K1=Karen1st; 
H2=Hmong2nd; C=Controls). (B) PCoA of unweighted UniFrac diet-based distances reveal significant 
clustering by sample group (ANOSIM R=0.29, P=0.001), with Hmong2nd now clustering with Hmong1st 
instead of with Controls as reported with microbiome-based distances. Dietary acculturation can be seen 
along PC1, as it is significantly correlated with years spent in the U.S. (ρ=0.56, P=2.2e-16). (C) 
Redundancy analysis (RDA) of the unweighted Unifrac microbiome-distances constrained by the first 5 
principal coordinates of the PCoA of unweighted Unifrac food-distances. The resulting RDA explains 
16.8% of the total variation explained by PC1 and PC2 of the microbiome PCoA (Figure 4A). 
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Figure 4.5. Gut biodiversity decreases with time spent in the U.S. 
(A) Unweighted Unifrac PCoA of gut microbiomes of first-generation Hmong and Karen participants (N = 
281), colored by years spent in the U.S. which ranges from 1 day to 40.6 years. PC1 is strongly correlated 
with the amount of time spent in the U.S. (⍴ = 0.62, p < 2.2e-16). (B) Unweighted Unifrac PCoA of gut 
microbiomes of cross-sectional participants (N=550), colored by Faith’s Phylogenetic Diversity. PC1 is 
negatively correlated with phylogenetic richness (⍴ = -0.34, p < 3.19e-09). (C) In first-generation Hmong, 
diversity significantly decreases over time in the U.S. (multiple regression: Years in US β = -0.18, P = 
0.0275; BMI β = -0.05, P = 0.81), but a significant association is not observed in first-generation Karen 
(Years in US β = -0.17, P = 0.71; BMI β = -0.27, P = 0.28). Interaction terms were not significantly 
associated with diversity, and were removed from the model. 
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Figure 4.6. Prevotella displacement is observable within one decade in the U.S. 
(A) Similarity (1 / Aitchison's distance) of microbiomes relative to Thai-based groups and to Controls. (B) 
Log ratio of Bacteroides to Prevotella of first-generation groups are significantly correlated to years spent 
in the U.S. (ρ = 0.44, P = 8.76e-15). Significantly correlated trends persist after stratification by ethnicity 
(Hmong ρ = 0.47, P = 8.16e-19; Karen ρ = 0.19, P = 0.023). (HT=HmongThai; KT=KarenThai; 
H2=Hmong2nd; C=Controls; 0-40=Years spent in the U.S. by Hmong1st and Karen1st). 
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Figure 4.7. Longitudinal changes immediately pre- and post-arrival to the U.S. 
(A) Comparison of per-participant changes between first and last months of the study in BMI, (B) protein 
consumption, (C) dietary diversity (Faith’s PD), and (D) Bacteroides to Prevotella ratios (paired t-test, 
macronutrients adjusted for multiple comparisons using false discovery rate, q < 0.05). (E) Bacteroides and 
Prevotella strain profiles are mostly stable after 6 months. Samples (columns) from the same participant are 
denoted by color, and M1 and M6 correspond to Month 1 Sample and Month 6 Sample, respectively. 
Selected strains are identical to Figure 4B (at least 50% coverage per sample across N=55 samples, see 
Table 4.5). (F) Taxonomic area charts of relative abundances of dominant genera (other taxa not shown) in 
6 individuals who began the longitudinal study while in a refugee camp in Thailand. First available samples 
were collected 6 to 34 days before departure, and second samples were collected 1 to 6 days after arrival to 
the U.S.  
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Figure 4.8. Western diet and Western microbiome induce deleterious responses in 
humanized mice 
(A) Mouse experimental study design included Thai- (T) or U.S.-based (U) donors and high-fiber (H) or 
low-fiber (L) diet, resulting in four groups: TH=Thai-HighFiber; UH=US-HighFiber; TL=Thai-LowFiber; 
UL=US-LowFiber. (B) PCoA using unweighted Unifrac distances of mouse microbiomes at study 
endpoints (8 or 10 weeks). (C)-(E) Feed efficiency, percent fat, fasting blood glucose were compared 
between groups at the end of 8 weeks (two-way ANOVA). (F) Immune cell counts (cell population counts 
are normalized by counts of live CD45+ cells) in the small intestine intraepithelial lymphocytes (two-way 
ANOVA). 
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Chapter 4 Supplemental Figures 

 

 
Figure 4.S1. Geographical locations of recruitment sites in Thailand. Related to 
Figure 4.1. 
Khun Chang Khian in Chiang Mai province and Mae La camp in Tak Province. 
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Figure S1. Geographical locations of recruitment sites in Thailand. Related to 
Figure 1.
Khun Chang Khian in Chiang Mai province and Mae La camp in Tak Province.
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Figure 4.S2. Alpha diversity boxplots of obese and lean individuals, separated by 
ethnicity. Related to Figure 4.4. 
Post-hoc analysis with Tukey’s HSD test across sample groups. 
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Figure 4.S3. Functional annotations. Related to Figure 4.4. 
(A) Differentiated relative abundances of functional pathways between HmongThai and Hmong1st (asin-
sqrt transformed abundances, ANOVA, FDR-corrected q < 0.10). (B) Prevalence of predicted biosynthetic 
gene clusters within sample groups. Comparison of groups with a looped Fisher’s exact test reveals that a 
predicted bacteriocin cluster is enriched in Hmong1st relative to HmongThai (P = 0.0002, FDR-corrected q 
< 0.10). 
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FASYN−ELONG−PWY: fatty acid elongation −− saturated
PWYG−321: mycolate biosynthesis
PYRIDNUCSYN−PWY: NAD biosynthesis I (from aspartate)
PWY−6897: thiamin salvage II
PWY−6700: queuosine biosynthesis
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PWY0−1479: tRNA processing
PHOSLIPSYN−PWY: superpathway of phospholipid biosynthesis I (bacteria)
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PWY−7323: superpathway of GDP−mannose−derived O−antigen building blocks biosynthesis
PWY−6731: starch degradation III
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PWY−7328: superpathway of UDP−glucose−derived O−antigen building blocks biosynthesis
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ORNDEG−PWY: superpathway of ornithine degradation
PWY−3781: aerobic respiration I (cytochrome c)
PWY−6608: guanosine nucleotides degradation III
MET−SAM−PWY: superpathway of S−adenosyl−L−methionine biosynthesis
ARGININE−SYN4−PWY: L−ornithine de novo  biosynthesis
PWY−6562: norspermidine biosynthesis
PPGPPMET−PWY: ppGpp biosynthesis
PWY−7560: methylerythritol phosphate pathway II
UNMAPPED
PANTOSYN−PWY: pantothenate and coenzyme A biosynthesis I
COA−PWY−1: coenzyme A biosynthesis II (mammalian)
COBALSYN−PWY: adenosylcobalamin salvage from cobinamide I
THISYNARA−PWY: superpathway of thiamin diphosphate biosynthesis III (eukaryotes)
SER−GLYSYN−PWY: superpathway of L−serine and glycine biosynthesis I
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PWY66−389: phytol degradation
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PWY−7013: L−1,2−propanediol degradation
PWY−841: superpathway of purine nucleotides de novo biosynthesis I
PWY−7228: superpathway of guanosine nucleotides de novo biosynthesis I
PWY0−166: superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
P461−PWY: hexitol fermentation to lactate, formate, ethanol and acetate
PWY−241: C4 photosynthetic carbon assimilation cycle, NADP−ME type
FERMENTATION−PWY: mixed acid fermentation
PWY−6549: L−glutamine biosynthesis III
PWY−7115: C4 photosynthetic carbon assimilation cycle, NAD−ME type
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P122−PWY: heterolactic fermentation
PWY−6901: superpathway of glucose and xylose degradation
PWY−7234: inosine−5'−phosphate biosynthesis III
PRPP−PWY: superpathway of histidine, purine, and pyrimidine biosynthesis
PWY−5918: superpathay of heme biosynthesis from glutamate
PWY−6383: mono−trans, poly−cis decaprenyl phosphate biosynthesis
SALVADEHYPOX−PWY: adenosine nucleotides degradation II
PWY−7003: glycerol degradation to butanol
ARGSYNBSUB−PWY: L−arginine biosynthesis II (acetyl cycle)
P185−PWY: formaldehyde assimilation III (dihydroxyacetone cycle)
PWY0−1297: superpathway of purine deoxyribonucleosides degradation
PWY0−1296: purine ribonucleosides degradation
PWY−5100: pyruvate fermentation to acetate and lactate II
PWY−5505: L−glutamate and L−glutamine biosynthesis
BIOTIN−BIOSYNTHESIS−PWY: biotin biosynthesis I
PWY−7282: 4−amino−2−methyl−5−phosphomethylpyrimidine biosynthesis (yeast)
PWY−7400: L−arginine biosynthesis IV (archaebacteria)
ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)
PWY−7229: superpathway of adenosine nucleotides de novo biosynthesis I
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NAGLIPASYN−PWY: lipid IVA biosynthesis
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ARGININE−SYN4−PWY: L−ornithine de novo  biosynthesis
PWY−6562: norspermidine biosynthesis
PPGPPMET−PWY: ppGpp biosynthesis
PWY−7560: methylerythritol phosphate pathway II
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COA−PWY−1: coenzyme A biosynthesis II (mammalian)
COBALSYN−PWY: adenosylcobalamin salvage from cobinamide I
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PWY−7013: L−1,2−propanediol degradation
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MET−SAM−PWY: superpathway of S−adenosyl−L−methionine biosynthesis
ARGININE−SYN4−PWY: L−ornithine de novo  biosynthesis
PWY−6562: norspermidine biosynthesis
PPGPPMET−PWY: ppGpp biosynthesis
PWY−7560: methylerythritol phosphate pathway II
UNMAPPED
PANTOSYN−PWY: pantothenate and coenzyme A biosynthesis I
COA−PWY−1: coenzyme A biosynthesis II (mammalian)
COBALSYN−PWY: adenosylcobalamin salvage from cobinamide I
THISYNARA−PWY: superpathway of thiamin diphosphate biosynthesis III (eukaryotes)
SER−GLYSYN−PWY: superpathway of L−serine and glycine biosynthesis I
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PWY66−389: phytol degradation
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PWY0−1061: superpathway of L−alanine biosynthesis
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PWY−7234: inosine−5'−phosphate biosynthesis III
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PWY−6383: mono−trans, poly−cis decaprenyl phosphate biosynthesis
SALVADEHYPOX−PWY: adenosine nucleotides degradation II
PWY−7003: glycerol degradation to butanol
ARGSYNBSUB−PWY: L−arginine biosynthesis II (acetyl cycle)
P185−PWY: formaldehyde assimilation III (dihydroxyacetone cycle)
PWY0−1297: superpathway of purine deoxyribonucleosides degradation
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PWY−5100: pyruvate fermentation to acetate and lactate II
PWY−5505: L−glutamate and L−glutamine biosynthesis
BIOTIN−BIOSYNTHESIS−PWY: biotin biosynthesis I
PWY−7282: 4−amino−2−methyl−5−phosphomethylpyrimidine biosynthesis (yeast)
PWY−7400: L−arginine biosynthesis IV (archaebacteria)
ILEUSYN−PWY: L−isoleucine biosynthesis I (from threonine)
PWY−7229: superpathway of adenosine nucleotides de novo biosynthesis I
GLYCOLYSIS: glycolysis I (from glucose 6−phosphate)
PENTOSE−P−PWY: pentose phosphate pathway
UNINTEGRATED
PWY−1042: glycolysis IV (plant cytosol)
PWY−7388: octanoyl−[acyl−carrier protein] biosynthesis (mitochondria, yeast)
FASYN−INITIAL−PWY: superpathway of fatty acid biosynthesis initiation (E. coli)
ANAGLYCOLYSIS−PWY: glycolysis III (from glucose)
PWY0−845: superpathway of pyridoxal 5'−phosphate biosynthesis and salvage
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PWY−6121: 5−aminoimidazole ribonucleotide biosynthesis I
PWY−6122: 5−aminoimidazole ribonucleotide biosynthesis II
HISTSYN−PWY: L−histidine biosynthesis
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TRPSYN−PWY: L−tryptophan biosynthesis
PWY−6385: peptidoglycan biosynthesis III (mycobacteria)

PWY−7219: adenosine ribonucleotides de novo biosynthesis
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PWY−7328: superpathway of UDP−glucose−derived O−antigen building blocks biosynthesis
PWY−2201: folate transformations I
ORNDEG−PWY: superpathway of ornithine degradation
PWY−3781: aerobic respiration I (cytochrome c)
PWY−6608: guanosine nucleotides degradation III
MET−SAM−PWY: superpathway of S−adenosyl−L−methionine biosynthesis
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PWY−6562: norspermidine biosynthesis
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PANTOSYN−PWY: pantothenate and coenzyme A biosynthesis I
COA−PWY−1: coenzyme A biosynthesis II (mammalian)
COBALSYN−PWY: adenosylcobalamin salvage from cobinamide I
THISYNARA−PWY: superpathway of thiamin diphosphate biosynthesis III (eukaryotes)
SER−GLYSYN−PWY: superpathway of L−serine and glycine biosynthesis I
PWY−6609: adenine and adenosine salvage III
P221−PWY: octane oxidation
PWY66−389: phytol degradation
PWY−6876: isopropanol biosynthesis
PWY−7013: L−1,2−propanediol degradation

−4 −2 0 2 4
Value

Color Key

HmongThai
Hmong1st
24

68
29
41

Biosynthesis 
Degradation/Utilization/Assimilation 
Generation of Precursor Metabolites and Energy 
Macromolecule Modification 
Metabolic Clusters 
Superpathways 
No Ontology

16
11

18
12

18
45

19
05 45
5 63 71

16
43

18
90 20

18
88

37
61

14
53

32
83

18
09

19
56 38
3 43

18
46

25
41 28
5 42 85
6

88
6

43
72

23
46 9

18
63

19
86

25
71

12
52

14
52

15
23

19
22

19
57

25
69

43
26 95

17
25

18
91

23
37 28
3

48
30

48
80

12
06

19
39

19
51

19
84

23
25

32
82

37
60

41
34

47
86

14
42

20
31 20
8

21
06 24
8

25
13

25
45

27
88

32
85

37
73

39
59

41
12 80
9

18
49 22
7

23
49

24
62 30
2

43
71 69

18
13

19
09

19
87 20
2

21
21

23
45

23
48

24
59

28
10

40
60 45
0

44
96 52
4

11
78

18
70

19
70 20
1

22
1

23
54

24
65

26
53

27
05

15
97

17
66

18
19

18
35

18
83

20
71

23
38

43
28

49
11 52

53
89

11
45

11
23

12
62

18
48

19
16

19
28

19
50

35
54

41
36

43
27

44
39

64
47 14

14
67

14
73

20
81 21
9

23
17

24
06

36
26

45
15 74
4

19
58 22
4

24
41

24
97

25
42

25
43

26
28

26
56

33
07

36
31

37
90

38
97

41
07

43
24

43
37 85
7

98
4

98
5

HmongThai
Hmong1st
18

78
0
41

A

B



 99 

 
Figure 4.S4. Macronutrient pairwise comparisons. Related to Figure 4.4. 
Pairwise comparisons with Tukeys’ HSD, significant p-values < 0.05 are shown. 
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Figure S4. Macronutrient pairwise comparisons. Related to Figure 4.
Pairwise comparisons with Tukeys’ HSD, significant p-values < 0.05 are shown.
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Figure 4.S5. Bipartite network of participant dietary records and food items. 
Related to Figure 4.4. 
(A) Edges and participants are colored by sample group, and food items are shown as white-filled 
diamonds. (B) We highlight the high prevalence of rice consumption. Participants who consumed rice are 
denoted as yellow nodes and yellow edges connected to the centroid (rice), otherwise participants were 
colored by sample group. 
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Figure S5. Bipartite network of participant dietary records and food items. Related 
to Figure 4.
(A) Edges and participants are colored by sample group, and food items are shown as 
white-filled diamonds. 
(B) We highlight the high prevalence of rice consumption. Participants who consumed rice 
are denoted as yellow nodes and yellow edges connected to the centroid (rice), otherwise 
participants were colored by sample group.
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Figure 4.S6. Procrustes of diet and microbiome distances. Related to Figure 4.4. 
(A) Procrustes permutation shows significant relatedness between individuals’ food and microbiome 
profiles. Shown at left is the Procrustes PCoA for a representative permutation (median Procrustes sum of 
squares distance from 9 permutations) compared to the original data Procrustes PCoA, and at right are the 
individual multidimensional distances between each individuals’ food and microbiome data after rotation. 
These points are significantly closer than expected by random chance (p = 1e-10, Mann Whitney U test). 
(B) All nine permutations of the Procrustes from panel A, including boxplots for the individual food-
microbiome distances; p-values are generated from the protest() function in package “vegan” in R. 
  

permuted original

−0.02

−0.01

0.00

0.01

0.02

−0.02−0.01 0.00 0.01 0.02 0.03
PC1

PC
2

Food
MB

KarenThai
HmongThai
Karen1st
Hmong1st
Hmong2nd
Control

Procrustes m2=0.77 P=0.001
Mantel r = 0.1 P=0.001

A

B

P= 0.024, 0.833, 0.429, 0.012, 0.939, 0.810, 0.639, 0.712, 0.006, 0.001

Figure S6. Procrustes of diet and microbiome distances. Related to Figure 4.
(A) Procrustes permutation shows significant relatedness between individuals’ food and 
microbiome profiles. Shown at left is the Procrustes PCoA for a representative permutation 
(median Procrustes sum of squares distance from 9 permutations) compared to the 
original data Procrustes PCoA, and at right are the individual multidimensional distances 
between each individuals’ food and microbiome data after rotation. These points are 
significantly closer than expected by random chance (p = 1e-10, Mann Whitney U test).
(B) All nine permutations of the Procrustes from panel A, including boxplots for the 
individual food-microbiome distances; p-values are generated from the protest() function in 
package “vegan” in R.



 102 

 
Figure 4.S7. PCoA of unweighted Unifrac distances of longitudinal samples. Related 
to Figure 4.7. 
First and last month samples are highlighted and connected by participant, with all intermediate monthly 
samples in gray. Inset shows the within-individual changes along PC1 and PC2 from first to last months 
(one sample t-test with change in PC1 or PC2). 
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Figure S7. PCoA of unweighted Unifrac distances of longitudinal 
samples. Related to Figure 7.
First and last month samples are highlighted and connected by participant, 
with all intermediate monthly samples in gray. Inset shows the within-individual 
changes along PC1 and PC2 from first to last months (one sample t-test with 
change in PC1 or PC2).
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Appendix 

Appendix A. Survey form. 

1. What is your birthdate? _____________ 
2. Do you live in public housing? _______ 
3. Do you receive medical assistance? _______ 
4. Do you have any children?  _______ 

If yes, do they qualify for free lunch? ______ 
 
5. How many years have you gone to school?  
_____  English as a Second Language 
_____  Less than High School 
_____ High School 
_____  College  
_____  Graduate School 
 
6. What is your ethnicity? 
  ____ Hmong 
 ____ Karen 
  ____ Other: ______________________ 
 
7. What is your religion? 
  ____ Buddhism 
  ____ Christianity 
  ____ Hmong animism 
  ____ Islam  
  ____ Other: ______________________ 
  ____ None  
 
8. Where were you born?  Please write name: camp/village/city, province, country 
__________________________________________________________________ 
 
9. What type of place was that?  
_____  a. Refugee camp.  
_____ b. Rural village.  
_____ c. Urban dwelling.  
_____  d. Other. _____________________ 
 
10. When did you arrive in the US? ______________________ 
 
11. Where did you live just before you arrived in the US? 
Please write name: camp/village/city, province, country 
__________________________________________________________________ 
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12. What type of place was this place?  
_____  a. Refugee camp.  
_____ b. Rural village.  
_____ c. Urban dwelling.  
_____  d. Other. _____________________ 
 

13. How long did you live there? ______________________ 
 

14. In this location, what did you usually eat per day? 
 
 Food and Drink Serving Size 
Breakfast   

 
 
 
 

 

Snack  
 
 

 

Lunch   
 
 
 
 
 
 

 

Snack  
 
 

 

Dinner   
 
 
 
 
 
 

 

Snack  
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15. What did you eat yesterday (including overnight)? 

 Food and Drink Serving Size 
Breakfast   

 
 
 
 

 

Snack  
 
 

 

Lunch   
 
 
 
 
 
 

 

Snack  
 
 

 

Dinner   
 
 
 
 
 

 

Snack  
 
 

 

 
16. Do you use tobacco - whether smoked cigarettes/cigars/pipes, or chewed tobacco? 

a. Never 
b. Currently- ever day use 
c. Currently- occasional use 
d. Used to use, now quit. 
 

17. Do you consume alcohol - whether beer, wine, whiskey or other liquors?  
a. Never 
b. Currently – 1-3 drinks every day 
c. Currently - 1-3 drinks every week 
d. Currently - 1-3 drinks every month 
e. Currently - 1-3 drinks occasionally (less than once a month) 
f. Used to drink, now quit. 
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Health Metrics 
 

18. Height 
________feet _____ inches 
 

19. Weight 
________ lb 
 

20. Waist Circumference 
________ inches 
 

21. Are you taking any medications? ______(Yes/No) 
If yes, please list: _____________________________ 
 

22. Do you know if you were breastfed as a child? 
If yes, do you know for how long? 
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Appendix B. Fecal sampling instructions 

How to Get Stool Sample 
 
Do this 1-4 days before you are going to bring us the sample.  
Urinate (pee) in the toilet before starting. 
 
For a video demonstration, please watch: 
http://z.umn.edu/impenglish 
 
The kit has these things:  
1.     A FecesCatcher paper 
2.     A tube  
3.     A stick 
4.     Latex-free gloves  
5.     A small envelope 
6.     A bag 
7.   A paper towel 
 
This is what you have to do: 
1. Gently open the FecesCatcher paper. Put the sticky ends on the left and right sides of 

the toilet. Make sure the center of the paper does not touch the water. Press hard on 
the sticky ends so they stick to the toilet.  

2. Have your normal bowel movement onto the paper. Make sure that nothing touches 
your stool, like toilet paper, water or urine. 

3. Wash and dry your hands. Put on the gloves. 
4. Unscrew the cap on the tube. Do not spill the liquid. Put the lid on the counter, with 

the inside facing up, towards the ceiling.  
5. Open the package with the stick. 
6. Get a small amount of stool on the stick, about the size of 3-4 grains of rice. 
7. Scrape the stool into the tube. 
8. Repeat this again to put another small amount of stool into the tube. 
9. Use the stick to evenly mix the stool and liquid in the tube. Throw away the stick. 
10. Tightly screw the lid on the tube. 
11. Place the tube in the small envelope and seal it. Place the envelope in the bag with the 

paper towel. 
12. Remove the FecesCatcher paper from the sides of the toilet.  Shake the FecesCatcher 

paper so the stool falls into the toilet.  
13. Either put the paper in a waste basket (recommended for all toilets, especially at 

home) Or: Put the paper into the toilet water, let it soak for 1-2 minutes and flush it 
down the toilet. 

14. Remove the gloves and put into the trash. Wash your hands. 
15. Keep the fecal sample at room temperature and away from children until you 

can return it to us.  


