2,040 research outputs found

    Application of non destructive testing to the detection of aeronautical defects in composite structures

    Get PDF
    A study of two Non-destructive Testing methods (NDT) was carried out in specimens with different kinds of simulated defects. Ultrasonics test (US) and Infrared Thermography (IRT) were applied with the aim to evaluate the detectability and the accuracy of each method.These techniques have acquired great importance in the aeronautics industry because they allow to control the aerostructures without intervening in their physical and mechanical integrity. In the second part of the study, a comparison of both techniques was achieved in order toanalyse their limits and advantages. It appeared that detectability of defects was much better in a sample with flat-bottomed holes defects in the case of Ultrasonic Test. However it was found that Infrared Thermography is much more limited to the thickness of the specimen than the ultrasonic waves. On the other hand, defects were all revealed with IRT in a sandwich composite including Teflon inserts, which was not the case for US

    Draft Genome Sequence of the Lignocellulose Decomposer Thermobifida fusca Strain TM51.

    Get PDF
    Here, we present the complete genome sequence of Thermobifida fusca strain TM51, which was isolated from the hot upper layer of a compost pile in Hungary. T. fusca TM51 is a thermotolerant, aerobic actinomycete with outstanding lignocellulose-decomposing activity

    Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae)

    Get PDF
    In addition to its economic impact, Colletotrichum acutatum sensu lato is an interesting model for molecular investigations due to the diversity of host-determined specialization and reproductive lifestyles within the species complex. The pathogen Colletotrichum fioriniae forms part of this species complex and causes anthracnose in a wide range of crops and wild plants worldwide. Some members of this species have also been reported to be entomopathogenic. Here, we report the draft genome sequence of a heterothallic reference isolate of C. fioriniae (strain PJ7). This sequence provides a range of new resources that serve as a useful platform for further research in the field

    Analysis of Archived Residual Newborn Screening Blood Spots After Whole Genome Amplification

    Get PDF
    Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals. Results: Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000-76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000-47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment. Conclusions: Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.National Institute of Health P01HD067244, NS076465, R01ES021006Nutritional Science

    Exploring the relationship between sequence similarity and accurate phylogenetic trees

    Get PDF
    © 2006 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in Molecular Biology and Evolution 23(2006): 2090-2100, doi:10.1093/molbev/msl080.We have characterized the relationship between accurate phylogenetic reconstruction and sequence similarity, testing whether high levels of sequence similarity can consistently produce accurate evolutionary trees. We generated protein families with known phylogenies using a modified version of the PAML/EVOLVER program that produces insertions and deletions as well as substitutions. Protein families were evolved over a range of 100–400 point accepted mutations; at these distances 63% of the families shared significant sequence similarity. Protein families were evolved using balanced and unbalanced trees, with ancient or recent radiations. In families sharing statistically significant similarity, about 60% of multiple sequence alignments were 95% identical to true alignments. To compare recovered topologies with true topologies, we used a score that reflects the fraction of clades that were correctly clustered. As expected, the accuracy of the phylogenies was greatest in the least divergent families. About 88% of phylogenies clustered over 80% of clades in families that shared significant sequence similarity, using Bayesian, parsimony, distance, and maximum likelihood methods. However, for protein families with short ancient branches (ancient radiation), only 30% of the most divergent (but statistically significant) families produced accurate phylogenies, and only about 70% of the second most highly conserved families, with median expectation values better than 10–60, produced accurate trees. These values represent upper bounds on expected tree accuracy for sequences with a simple divergence history; proteins from 700 Giardia families, with a similar range of sequence similarities but considerably more gaps, produced much less accurate trees. For our simulated insertions and deletions, correct multiple sequence alignments did not perform much better than those produced by T-COFFEE, and including sequences with expressed sequence tag–like sequencing errors did not significantly decrease phylogenetic accuracy. In general, although less-divergent sequence families produce more accurate trees, the likelihood of estimating an accurate tree is most dependent on whether radiation in the family was ancient or recent. Accuracy can be improved by combining genes from the same organism when creating species trees or by selecting protein families with the best bootstrap values in comprehensive studies.This work was supported by National Institutes of Health grant AI1058054 to M. Sogin

    Experimental investigation of impact behavior of wood-based sandwich structures

    Get PDF
    Low carbon emission and sustainable development are shared goals throughout the transportation industry. One way to meet such expectations is to introduce lightweight materials based on renewable sources. Sandwich panels with plywood core and fiber reinforced composite skins appear to be good candidates. Additional properties of wood such as fire resistance or thermal and acoustic insulation are also essential for many ap- plications and could lead to a new interest for this old material. In this paper, Sandwich panels with two different types of plywood and four different skins (aluminum and glass, CFRP, or flax reinforced polymer) are tested under low-velocity/low energy impacts and their behavior is discussed

    Toward improvement of the properties of parts manufactured by FFF ( Fused Filament Fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon

    Get PDF
    In this paper, the printing temperature ranges of PLA and PEEK, two semi-crystalline thermoplastics, have been investigated for the Fused Filament Fabrication (FFF) process. The printing range, comprised between the melting temperature and the degradation of each polymer, is 160°C to 190°C for PLA and 350°C to 390°C for PEEK. The complex viscosity has been measured for both polymers within the printing range. The kinetics of coalescence has been registered by measuring the bonding length between two filaments of the same polymer according to the temperature. At 167°C, the filaments of PLA reached the maximum value of bonding length. For PEEK, the filaments reached the maximum value of bonding length at 380°C. For the both materials, the final height of the filament is 80% of the initial diameter. The comparison of the obtained results with experimental study and predictive model shows a good agreement when the polymer is totally in fusion state

    Manufacturing and quasi-static bending behavior of wood-based sandwich structures.

    Get PDF
    The quasi-static behavior of innovative wood based sandwich structures with plywood core and skins made either of aluminum or of fiber reinforced polymer (carbon, glass or flax composite skins) was investigated. The wood based sandwich structures were subjected to three point static bending tests to determine their strength and failure mechanisms. Two different manufacturing processes, namely vacuum bag molding and thermo-compression, were used to manufacture the structures. The influence of some aspects of the different manufacturing processes on the flexural behavior of wood based sandwich structures are discussed. It is shown that manufacturing processes influence strongly the static responses. Failure modes and strengths are investigated during quasi-static bending tests. Bending tests showed that the mechanical characteristics were very high compared to those of a reference sandwich that is currently used for civil aircraft floors. This new kind of structure is environmentally friendly and very cheap, and seems promising for the transportation industry in general

    Identification de mécanismes d’endommagement de stratifiés carbone/époxy par couplage entre émission acoustique et thermographie infrarouge

    Get PDF
    Ce travail de recherche vise à améliorer la compréhension et la caractérisation des mécanismes d’endommagement pouvant affecter sous chargements quasi-statiques le comportement des composites carbone-époxy unidirectionnels en couplant deux méthodes de suivi de l’endommagement : l’émission acoustique (EA) et la thermographie infrarouge (TI)

    Utilisation de la thermographie infrarouge et de l'émission acoustique pour l'identification de l'endommagement d'un composite stratifié carbone-époxy

    Get PDF
    Le manque de connaissances dans le comportement des matériaux composites à base carbone induit encore de nombreux surcoûts pour la fabrication des structures aéronautiques. Lorsqu’une structure stratifiée en matériaux composites est sollicitée, la dégradation de ses propriétés est effective avant sa rupture. Actuellement, un certain nombre de techniques de contrôle non destructif visent à caractériser les propriétés mécaniques d’un matériau de manière à estimer l’importance de cet endommagement. La caractérisation ultrasonore en immersion donne notamment accès aux constantes élastiques du matériau. La thermographie infrarouge et les émissions acoustiques permettent quant à elles de déterminer la charge élastique et de mettre en évidence le début de l’endommagement. Ce document présente un couplage de la thermographie infrarouge et de la mesure des émissions acoustiques de façon à contrôler la structure en temps réel lors du chargement. Cette méthodologie est mise en œuvre sur des composites carbone-époxy unidrectionnels sollicités en traction uniaxiale dans des situations dans et hors axes. La corrélation des différentes techniques permettent une compéhension fine de l’endommagement de ces structures composites
    corecore