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Innovative Solutions
to Sticky Situations:

Antiadhesive Strategies for

Treating Bacterial Infections
ZACHARY T. CUSUMANO,* ROGER D. KLEIN,* and

SCOTT J. HULTGREN?

!Department of Molecular Microbiology, Washington University School of Medicine,

ABSTRACT Bacterial adherence to host tissue is an essential
process in pathogenesis, necessary for invasion and colonization
and often required for the efficient delivery of toxins and
other bacterial effectors. As existing treatment options for
common bacterial infections dwindle, we find ourselves
rapidly approaching a tipping point in our confrontation

with antibiotic-resistant strains and in desperate need of

new treatment options. Bacterial strains defective in
adherence are typically avirulent and unable to cause
infection in animal models. The importance of this initial
binding event in the pathogenic cascade highlights its
potential as a novel therapeutic target. This article seeks to
highlight a variety of strategies being employed to treat and
prevent infection by targeting the mechanisms of bacterial
adhesion. Advancements in this area include the development
of novel antivirulence therapies using small molecules,
vaccines, and peptides to target a variety of bacterial infections.
These therapies target bacterial adhesion through a number
of mechanisms, including inhibition of pathogen receptor
biogenesis, competition-based strategies with receptor and
adhesin analogs, and the inhibition of binding through
neutralizing antibodies. While this article is not an exhaustive
description of every advancement in the field, we hope it

will highlight several promising examples of the therapeutic
potential of antiadhesive strategies.

INTRODUCTION

The discovery of penicillin in 1928 and its subsequent
introduction as a therapeutic in the 1940s sparked the
antibiotic era, ushering in effective treatment options for
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many common bacterial infections (1). Following the
end of World War II, several pharmaceutical companies
including Bayer, Merck, and Pfizer became household
names through the discovery and clinical success of a
number of additional antibiotics, which were identified
by screening soil samples for antimicrobial activity (1).
Compounds identified during this screening became the
founding members of many now-ubiquitous groups of
antibiotics, including the tetracycline, rifamycin, quin-
olone, and aminoglycoside families. In the early 1970s,
declining rates of novel antibiotic discovery from mi-
crobial sources shifted the onus of antimicrobial devel-
opment to synthetic chemists, who were tasked with
designing and screening new compounds based on
known principles of antibiotic design. These synthetic
chemists were faced with many practical challenges,
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including poor penetration into bacterial cells, bacterial
enzymes, and/or efflux pumps that degrade or expel the
compounds, respectively, innate resistance mechanisms,
and the requirement of high concentrations of some
compounds that result in toxic side effects (2, 3).

As the difficulty of novel antimicrobial discovery in-
creased and the incidence of vaccine-preventable dis-
ease continued to fall, the apparent ease and speed with
which most infections were cured decreased the incen-
tives driving antimicrobial development. As a result, for-
profit drug companies shifted their foci away from the
development of antimicrobials and toward drugs de-
signed to treat chronic, noncommunicable diseases. In-
deed, the increase in patient life expectancy, brought
on in part by the decrease in deaths from infectious
diseases, coupled with the rising prevalence of metabolic
diseases, dramatically increased the population of pa-
tients requiring treatment for cancer, diabetes, and hy-
perlipidemia. In contrast to the 5- to 7-day treatment
course for most antibiotic infections, chronic diseases
require constant medication, providing pharmaceuti-
cal companies with a much higher return on invest-
ment. Investigation into these more lucrative therapeutic
areas largely halted the research and development of
new antimicrobials by for-profit companies (2, 3).
Concurrently, resistance to existing antimicrobials has
continued to rise as a result of their sustained misuse
in both agriculture and clinical settings (4, 5), pro-
pelling us into a postantibiotic era defined by dwin-
dling treatment options for many common infections.
Recently, the CDC has recognized several pathogens
as “urgent” or “serious” threats, including Clostridium
difficile, carbapenem-resistant Enterobacteriaceae, mul-
tidrug-resistant Pseudomonas aeruginosa, vancomycin-
resistant Enterococcus, and others (6). The prevalence
of these pathogens and their associated morbidity and
mortality has highlighted the need for the identification
of new canonical antibiotics and innovative therapeutic
strategies to fight what were once considered easily cur-
able bacterial infections.

Currently, common antibiotics function by inhibiting
or disrupting important bacterial cellular processes,
including cell wall synthesis, RNA transcription, DNA
replication, and protein synthesis needed for cell via-
bility. While this has resulted in the development of
effective broad-spectrum antibiotics, it has also gener-
ated a strong selective pressure that fosters development
of bacterial resistance. To circumvent this problem,
researchers have begun targeting specific virulence
mechanisms critical to the ability of specific bacteria to
cause disease (7-9). These “antivirulence” therapeutics

are designed to neutralize pathogenesis and promote
efficient clearance by the host immune system without
affecting overall bacterial viability. It is believed that
targeting these nonessential processes will weaken the
selective pressure currently driving the development of
resistance, increasing the effective therapeutic lifetime
of these drugs (10). Additionally, the specific targeting of
pathogenic bacteria eliminates the nonspecific killing of
the beneficial human microbiota, which occurs during
broad-spectrum antibiotic therapy (11-14). Recent re-
search into the role of the human microbiota in human
health and disease has led to our understanding of the
microbiota as a bacterial organ within the host that
trains the immune system and provides essential meta-
bolic functions for the host. Perturbation of this system
has been linked to significant decreases in overall health
and a plethora of numerous disease complications (15).
Thus, regular insults to the human microbiota through
antibiotic treatment can result in a detrimental state of
dysbiosis (16). To overcome resistance and protect the
commensal microbiota, researchers are actively pursuing
antibiotic-sparing therapeutic strategies to target and
disrupt pathways related to virulence but not to general
bacterial viability (9, 10, 17).

Antivirulence Therapies

Bacterial virulence factors are defined by their role in
pathogen replication and formation of the disease state
within the host environment. These bacterial determi-
nants can provide a fitness advantage by mediating
a variety of processes, including evasion of the host
immune system, extraction of required nutrients from
the host, or colonization of a particular niche. Toxins,
cytolysins, bacterial secretion systems, and proteases are
a few common examples of such factors that have been
the subject of intensive investigation. To date, many
successful examples of antivirulence therapeutic studies
have focused on abrogating the effectiveness of toxins,
be it through direct inhibition of activity, delivery, or
attachment to the host cell (18-20). One such study
utilized a glycomimetic approach to inhibit Shiga toxin’s
recognition of the host receptor, globotriaosylceram-
ide, which has proven to be effective in vitro and in
animal models of enterohemorrhagic Escherichia coli
infections (21, 22). Similarly, the monoclonal antibody
raxibacumab targets the protective antigen component
of anthrax toxin (23) and was approved by the FDA in
2012 for protection against and treatment of inhaled
anthrax (23-25). Despite this great promise, however,
only a handful of antivirulence therapeutics have made it
to human clinical trials to date.
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In addition to secreted factors, investigators have also
targeted virulence factors on the cellular surface. Two
such targets, the polysaccharide capsule and flagellar
appendages of E. coli, have been studied extensively for
their role in phagocytosis of bacteria by host immune
cells and bacterial chemotaxis and motility, respectively
(26, 27). Structures mediating bacterial adhesion have
also proven to be promising antivirulence targets, be-
cause nearly all bacterial pathogens utilize specific ad-
hesion modalities to colonize biotic and abiotic surfaces
(28-32). This adhesion is required to resist the natural
clearance mechanisms of the host, including high liquid
flow rates on mucosal surfaces in the gastrointestinal,
upper-respiratory, and genito-urinary tracts. Thus, the
importance of adhesion in establishing an infection
makes it one of the most attractive targets for new
therapeutics.

BACTERIAL ADHESIVE STRATEGIES

Pili

Pili (or fimbriae) are long proteinaceous filaments that
are utilized by both Gram-negative and Gram-positive
bacteria to adhere to host surfaces while maintaining
a separation between the cell membranes, preventing
the electrostatic repulsion that occurs as a result of
the net negative charge found on the surface of both
the bacteria and host. Pili are generally composed of
hundreds or thousands of repeating protein subunits
interacting covalently (in the case of Gram-positive
bacteria) or noncovalently (in the case of Gram-negative
bacteria) to form the shaft of the pilus. For both Gram-
negative and Gram-positive bacteria to interact with
the host, additional protein subunits are often incorpo-
rated into the pilus, including tip adhesins that mediate
stereochemically specific interactions with a host re-
ceptor (33). Like lectins, adhesin domains frequently
recognize oligosaccharides found on glycoproteins or
glycolipids (34). The specificity of these interactions
often dictates a pathogen’s tropism for a particular host
tissue. In addition to cell surface carbohydrate recep-
tors, some pili also interact with proteinaceous com-
ponents of the basement membrane or extracellular
matrix and may bind the collagen, fibronectin, and
fibrinogen found extensively throughout the host (30,
35). Despite a common overall function of Gram-
negative and Gram-positive pili of mediating attach-
ment, the structure and biosynthetic machinery required
to generate these adhesive structures vary drastically

(28) (Fig. 1).

Antiadhesive Strategies for Treating Bacterial Infections

Chaperone usher pathway (CUP) pili

Members of the CUP family of pili have been extensively
characterized in Gram-negative bacteria. CUP pili are
a diverse set of homologous appendages distributed
throughout the Enterobacter genus. A recent analysis
identified 458 CUP pili operons, which represent 38
distinct CUP pilus types based on usher phylogeny in
Escherichia alone (36, 37). CUP pili tipped with specific
adhesins enable E. coli to bind to distinct ligands on
host cells with stereochemical specificity. CUP pilus bio-
genesis is defined by the utilization of the eponymous
chaperone and usher, which function to coordinate
and catalyze pilus assembly. CUP chaperones are local-
ized to the bacterial periplasm and consist of two im-
munoglobulin (Ig) domains that are required for the
folding and stability of the secreted pilin structural
subunits. Each structural subunit is composed of an in-
complete immunoglobulin fold lacking the C-terminal
beta strand, which results in the presence of a hydro-
phobic grove with, in the case of the well-studied Pap (P)
pilus system, five defined hydrophobic pockets, termed
P1 to PS. Chaperone-assisted folding of pilin domains
occurs by a reaction termed donor strand complemen-
tation. During this process, a series of conserved exposed
hydrophobic residues on the cognate chaperone’s G1
strand are buried in the hydrophobic pockets comprising
the groove of the pilus subunit, thus forming a complex
in which the subunit’s Ig fold is completed (38, 39).
Incorporation of the chaperone’s G1 B-strand occurs in
a noncanonical parallel fashion, generating a stable yet
high-energy intermediate.

Chaperone-subunit complexes are next targeted to
the outer membrane, where they interact with the
membrane-localized usher, which both catalyzes pilus
assembly and acts as a gated pore (Fig. 1). Ushers con-
tain five functional domains: a 24-stranded transmem-
brane B-barrel translocation domain, a B-sandwich
plug domain (PD) that resides in the pore of the TD
in the apo-usher, an N-terminal periplasmic domain
(NTD), and two C-terminal periplasmic domains (CTD1
and 2) (40-42). These domains function as compo-
nents of a molecular machine that catalyzes pilus bio-
genesis and secretes pili across the outer membrane. The
crystal structures of both an usher-chaperone-adhesin
ternary complex in the well-studied type 1 pilus system
(FimCDH) and a fimbrial tip (FimFGH) in complex
with the chaperone and usher have been solved (41,
43). Binding of the chaperone-adhesin complex to the
usher results in translocation of the PD into the peri-
plasmic space (40, 41) and a conformational change in
the translocation domain from the apo, kidney-shaped
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FIGURE 1 Comparison of structure and assembly mechanism of common extracellular
adhesive organelles. (A) Following translocation through the SecYEG apparatus, the FimA
structural subunits are bound by the FimC chaperone via the donor strand complemen-
tation reaction before delivery to the FimD usher, which catalyzes a donor strand ex-
change reaction that links subunits of the growing pilus. (B) In the periplasmic space,
soluble CsgA binds the CsgE chaperone, which delivers it to the CsgG pore for secretion to
the outer membrane. From there, its folding and polymerization is nucleated by CsgB,
which is anchored to the outer membrane by the CsgF assembly factor. (C) Ebp pilus
subunits integrate themselves into the membrane, where the dedicated pilus assembly
sortase, SrtC, cleaves the sorting sequence and facilitates the nucleophilic attack by a new
incoming subunit. The fully assembled pilus is then integrated into the membrane by the

housekeeping sortase, SrtA.

conformation (52 x 28 A) to a circular form (44 x 36 A).
This conformational change likely facilitates the extru-
sion of folded pilins (~20 to 25 A in diameter) across
the outer membrane. After translocation into the peri-
plasmic space, the PD mediates a high-affinity interac-
tion with the NTD of the usher (41, 44). Thus, the PD
gates the translocation domain such that, in the absence
of pili, the PD prevents large molecules from flowing
freely across the outer membrane (45). The PD, NTD,
CTD1, and CTD2 work together in the assembly func-
tion of this molecular machine. Mutations in either NTD
or CTDs or deletions of the PD completely inhibit pilus
assembly, implicating their direct role in catalysis of
pilus assembly (44, 46).

Polymerization of pilus subunits occurs via a process
known as donor strand exchange (DSE) and is depen-
dent upon a hydrophobic N-terminal extension encoded

by all pilus subunits, excluding the adhesin. (45, 47-49).
Pilus DSE occurs at the usher when the chaperone is
displaced, and an incoming subunit’s N-terminal ex-
tension zips into the previously chaperone-bound groove
of a nascently incorporated subunit at the growing ter-
minus of the pilus (Fig. 2B and C). It is believed that
interaction of the donated N-terminal extension with the
vacant pocket of the acceptor pilus subunit results in
initiation of a “zip-in-zip-out mechanism,” displacing
the chaperone’s G1 B-strand and facilitating the final
folding of the pilus subunit. This process is repeated for
each round of subunit incorporation into the fiber such
that every subunit in the pilus completes the Ig fold of
its neighbor. In contrast to the chaperone’s donated
B-strand, which interacts in a parallel fashion, the in-
coming N-terminal extension binds in the canonical
antiparallel fashion (Fig. 2B and C). This results in a
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FIGURE 2 Inhibitors of the donor strand exchange reaction
between pilus subunits are able to abrogate pilus biogenesis.
(A) Crystal structure of the FimG adaptor's donor strand
exchange reaction with the pilin domain of the FimH ad-
hesin (PDB ID code 3JWN). FImG donates its hydrophobic
N-terminal beta strand to FimH, which is shown residing in
the P5 pocket. (B) Schematic of the donor strand comple-
mentation and donor strand exchange pathways. The donor
strand complementation reaction between the chaperone G1
strand and the bound pilin results in a noncanonical parallel
fashion (left panel), while the zip-in, zip-out process under-
lying the DSE reactions results in the formation of an anti-
parallel, low-energy interaction (adapted from reference 240).
(C) Chemical structure of compound 3, first identified from
an in silico docking assay before further refinement in in vitro
DSE assays.

folded pilin domain in a much lower energy state than
its chaperone-bound form. It is believed that the transi-
tion from the chaperone-bound high-energy state to the
NTE-bound low-energy state that occurs during DSE
provides the energy necessary to drive pilus formation
in the periplasmic space, which lacks ATP and is not
coupled to the proton motive force (50).

Type 1 and pap pili: roles in

urinary tract infections (UTls)

CUP pili have been identified as key virulence determi-
nants in murine UTIs, making them exciting targets for
novel therapeutics. UTIs affect more than 150 million
people annually and are a significant cause of morbidity

Antiadhesive Strategies for Treating Bacterial Infections

in women throughout their lifespan, (51, 52). UTT is
generally divided into two major diseases, demarcated
by their location within the urinary tract. Infection and
colonization of the bladder in healthy women is com-
monly referred to as uncomplicated cystitis. Upon in-
troduction of bacteria into the bladder, bacteria can
ascend the ureters and colonize the kidneys, causing
pyelonephritis. The clinical sequelae of pyelonephritis
are particularly concerning, because an uncontrolled
bacterial infection in the renal pelvis and calyces can
spread to the bloodstream, leading to sepsis and death.

Uropathogenic E. coli (UPEC) is the most common
causative agent of UTI, responsible for 80 to 90% of
all infections (53-55). UPEC tropism for the murine
bladder is largely mediated via type 1 (fim) pili. The type
1 pilus adhesin, FimH, binds mannosylated uroplakins
on the bladder surface and P1-3 integrin receptors
throughout the bladder tissue. The rod of the type 1 pilus
is composed of ~1,000 FimA protein subunits, which
are wound in a helical manner to create a force-sensitive
cylindrical shaft (56). At the distal tip of the rod is a
flexible fibrillum composed of two adaptor proteins,
FimF and FimG, and the two-domain tip adhesin FimH
(57). It is the lectin domain (FimH;) of this adhesin
that mediates interaction with host cell receptors and
facilitates invasion of the bacteria into the uroepithelial
cells, also called superficial facet cells (58). The pilin
domain (FimHp) interacts with the FimG adaptor. Once
internalized, a single bacterium can rapidly replicate
in the host cytoplasm to form a biofilm-like intracel-
lular bacterial community (IBC) (58-60). Once these
communities reach maturation, bacteria within the IBC
disperse and flux out, becoming filamentous. These fil-
amentous bacteria can then go on to adhere to and in-
vade neighboring superficial facet cells, reinitiating IBC
formation and the pathogenic cycle.

Following this acute pathogenic cycle, the outcome
of UPEC bladder infection in naive mice often resolves,
leading to sterilization of the urine within days of inoc-
ulation. However, fairly frequently, this acute infection
results in chronic cystitis, which is characterized by per-
sistent high titer bacteriuria accompanied by chronic
bladder inflammation. Clinical evidence of chronic in-
flammation in women suffering from recurrent UTIs (61,
62), as well as the observation of IBCs and bacterial
filaments in women diagnosed with acute UTIs (63),
supports the validity of the IBC pathogenic cycle and
the ability of the mouse model to recapitulate human
disease.

In contrast to colonization of the bladder, adher-
ence to and infection of the kidneys is believed to occur
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primarily via interactions of P pili with Galo-4Gal-
containing glycolipid receptors, which are expressed
throughout the kidneys and ureters of mammals (64).
Like the type 1 pilus, P pili are comprised of a rod gen-
erated from repeating major subunits (PapA) and a
distal fibrillum tip containing minor pilins (PapK, PapE,
and PapF) and the adhesin PapG (635, 66). To date, three
alleles of PapG have been discovered, each mediating
attachment to a slightly different host receptor and con-
sequently determining host tropism (67-69). Human
kidneys, for example, abundantly express the ligands
for PapG-II, globoside, and as a result, human pyelo-
nephritis usually involves colonization of UPEC that
expresses PapG-II alleles. Conversely, PapG-III binds
strongly to Forssman glycolipid, which is present in dog
but not in human kidneys, and most cases of pyelone-
phritis in dogs involve UPEC encoding the PapG-III
allele (67-69). Unfortunately, the lack of these receptors
in small mammals, specifically mice, has limited the
ability to dissect the molecular details of pathogenesis
with regard to pyelonephritis. Nevertheless, the unique
role of these pili in mediating tissue-specific tropism
makes them excellent targets for preventing infection
throughout the urinary tract.

Gram-positive pili

While pili expressed by Gram-negative bacteria have
been extensively studied over the last several decades, the
identification and characterization of pili from Gram-
positive bacteria has occurred relatively recently. Al-
though pili were observed in Corynebacterium renale
as early as 1968 (70), the mechanism of biogenesis re-
mained unknown until a decade ago, when work with
Corynebacterium diphtheriae revealed the unique func-
tion of a pilus-specific sortase on the highly conserved
pilus domain structure (71).

In Gram-positive bacteria, each pilus subunit domain
contains a highly conserved sortase recognition motif
(LPXTG) followed by a hydrophobic transmembrane
domain and a positively charged C-terminal tail (72, 73).
Pilus assembly is initiated by the Sec-dependent secretion
of pilin subunits, which become anchored to the cyto-
plasmic membrane via their C-terminal hydrophobic
membrane-spanning region (74). Subsequently, follow-
ing insertion in the membrane, the pilus-dedicated sort-
ase recognizes and cleaves between the threonine and
glycine residues of the LPXTG motif to produce an acyl-
enzyme intermediate (75, 76). This intermediate is re-
solved by nucleophilic attack from an amino group on a
specific lysine side chain from an incoming pilin subunit,
resulting in the covalent attachment of the two pilin

subunits (71, 77). The lysine responsible for the nucle-
ophilic attack is located within a pilin motif whose
sequence varies between pilus subtypes (72, 78). Repe-
tition of this process results in growth of the pilus fiber
from the base as sortase cleavage of each subsequent
pilus subunit is resolved by nucleophilic attack by a
newly incorporating subunit. Pilus assembly is termi-
nated by a housekeeping sortase enzyme encoded out-
side the pilus operon, which covalently attaches the
pilus to the cell wall through a final transpeptidation
reaction (71) (Fig. 1). Similar to Gram-negative bacteria,
minor subunits can be commonly found at the distal end
of Gram-positive pili, including adhesins that mediate
interactions with host receptors (79). Since their identi-
fication nearly 50 years ago, pili have been identified and
implicated in diseases for several Gram-positive patho-
gens including Streptococcus agalactiae (80), Strepto-
coccus pneumonia (81), and Enterococcus faecalis (82,
83).

Role of Ebp pilus in Enterococcus
catheter-associated UTI (CAUTI)
The endocarditis- and biofilm-associated (Ebp) pilus is
encoded by several Gram-positive bacteria including
E. faecalis (84). E. faecalis is a leading cause of CAUTI,
because its ability to adhere to both host and abiotic
surfaces as well as its resistance to multiple antibiotics
makes it difficult to prevent and treat (85, 86). A com-
mon feature of E. faecalis infections is their dependence
on an abiotic surface, such as a catheter, to cause an
infection (87). This reliance can be recapitulated in a
mouse model of CAUTI using a small piece of silicone
tubing to mimic catheterization in humans (88). Con-
sistent with clinical findings, E. faecalis is rapidly cleared
from the mouse bladder in the absence of a catheter.
Establishment of the mouse CAUTI model has allowed
investigation of the molecular mechanisms of E. faecalis
pathogenesis, identifying the unique interplay between
the host and pathogen. Catheterization in mice stimulates
a robust inflammatory response, increasing the levels of
inflammatory cytokines while causing edema and the
release of fibrinogen, a glycoprotein shown to adhere to
implanted catheters (82, 89). Within 24 hours, the sur-
face of the indwelling catheter is completely coated with
fibrinogen (82). Many of these immunological findings
have been demonstrated in humans and verified by a
number of clinical studies, giving further credence to the
robustness of the murine CAUTI model (90-92). Accu-
mulation of fibrinogen on the urinary catheter provides
a surface for the attachment of E. faecalis, which is me-
diated by the Ebp pilus and involves direct recognition
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of fibrinogen (82). Deletion of the pilus operon eliminates
the ability of the bacteria to adhere to the catheter in vivo
and abolishes the infection, demonstrating the essential
role for the pilus in mediating attachment to the catheter
and establishing disease (82, 83).

The Ebp pilus is composed of three proteins, EbpA,
EbpB, and EbpC, and is encoded in the enterococcal ge-
nome as a single operon along with the pilus-dependent
sortase, SrtC (Fig. 1) (93). The shaft of the pilus is
comprised of a polymer of EbpC subunits, with EbpA
localized at the distal tip of the pilus and EbpB at the
base (93) (Fig. 1). Deletion of ebpA disrupted bacterial
binding to fibrinogen in vitro and completely attenu-
ated virulence in vivo (82, 83). The N-terminal region
of EbpA, which contains a Von Willebrand factor A
domain with a conserved metal-ion-dependent adhe-
sion site (MIDAS) motif, is required for recognition
of fibrinogen (82, 83). MIDAS motifs are commonly
found in proteins responsible for mediating interactions
with extracellular matrix proteins (94). Mutation of
the MIDAS motif in ebpA eliminates binding to fibrin-
ogen in vitro and phenocopies an ebpA mutant in vivo
(82, 83). Together, this work has elucidated the molec-
ular recognition of fibrinogen by EbpA, identifying it
as a putative target for prevention and treatment of
CAUTL

Biofilm Formation

Biofilms are loosely defined as surface-associated mi-
crobial communities and have been shown to play a
central role in bacterial persistence in both commensal
environmental and pathogenic colonization of the host
niches (95, 96). Biofilm formation is generally triggered
by an environmental cue that initiates a change in the
physiological state of the bacteria, drastically altering
the biological properties of the bacteria compared to a
planktonic state (97, 98). The expression of pili or
nonpilus adhesins is considered central to this transition,
because they allow bacteria to interact with cellular or
abiotic surfaces and other bacteria during formation of
the extracellular matrix, which often consists of both
proteinaceous and polysaccharide components (78, 99,
100). Disruption of this adherence through genetic
deletion of specific pili or adhesins completely abol-
ishes biofilm formation in many bacterial systems (101-
104).

Upon establishment, bacteria embedded within a
biofilm are able to survive a number of environmental
stresses, contributing to bacterial pathogenesis and dis-
ease in a variety of chronic infections (105). Encapsu-
lation within a biofilm decreases bacterial susceptibility

Antiadhesive Strategies for Treating Bacterial Infections

to changes in environmental pH and osmolarity while
conferring resistance to phagocytosis, desiccation, and
UV light (106). In addition, bacteria within biofilms are
commonly recalcitrant to antibiotic treatment due to a
number of mechanisms, including a decrease in anti-
biotic penetration, expression of antibiotic-modifying
enzymes, and the formation of persister cells whose
metabolic dormancy promotes the resistance of coloni-
zation (107, 108). Given the high association of biofilms
with indwelling medical devices, the increased use of
these devices has resulted in a concurrent increase in the
incidence of chronic, antibiotic-resistant infections.

Curli

Curli were first described in Salmonella in 1989 and
have been extensively studied in both Salmonella and
E. coli (109). Curli fibers mediate the formation of bac-
terial biofilms and have also been to shown to interact
with extracellular DNA as part of the biofilm. Although
this interaction is not essential for biofilm formation
(110), it has been shown to increase the rate of biofilm
formation (111).

The biochemical and biophysical properties of curli
fibers have long been known to mirror those of patho-
logic amyloids (112). Indeed, structural characterization
has revealed that, like known amyloids, curli fibers are 4
to 12 nm wide, highly resistant to denaturation, possess
a cross B-sheet structure, and bind to amyloid-specific
dyes such as Congo red and thioflavin T (113). A variety
of pathogenic, eukaryotic amyloids have been impli-
cated in several neurodegenerative diseases, including
Alzheimer’s, Parkinson’s, and Huntington’s diseases,
making prevention of amyloid formation therapeutic-
ally relevant. Identification of curli fibers as functional
amyloids has opened up an interesting avenue of re-
search focused on understanding the molecular mecha-
nisms of curli assembly and the processes by which
bacteria regulate the spatio-temporal formation of curli
fibers (114-116). Ultimately, this approach may aid in
the identification of novel therapeutics to target bacterial
production of curli-associated biofilms while elucidating
new treatment options for common neurodegenerative
diseases. Further, Rapsinski et al. reported that extra-
cellular DNA is bound tightly by bacterial amyloid
fibrils during biofilm formation and that amyloid/DNA
composites are powerful immune stimulators when in-
jected into mice, leading to autoimmunity (111).

Curli assembly in bacteria is directed by a unique,
highly regulated process (114-116) (Fig. 1). The extra-
cellular curli fibers consist primarily of a major com-
ponent, CsgA, and a minor component, CsgB (112).
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Formation of curli fibers requires the periplasmic assem-
bly factor CsgE and outer membrane assembly factor
CsgF, which both associate with the outer membrane
channel protein CsgG (117, 118). Nine CsgG subunits
form a 36-stranded B-barrel that traverses the lipid bi-
layer, forming a 0.9-nM channel through which CsgA,
CsgB, and CsgF are secreted as disordered monomers
(119, 120). Once secreted, CsgF associates with CsgG on
the outside of the cell and anchors CsgB to the pore and/
or outer membrane (117). CsgB in turn anchors curli
fibers to the cell surface and nucleates CsgA polymeri-
zation (121-123). Deletion of CsgB or CsgF results in
attenuation of curli formation and the release of CsgA
monomers into the surrounding milieu (117, 123). CsgE
is believed to function as a pore gating factor and curli-
specific chaperone, sequestering unfolded CsgA subunits
in the periplasm and facilitating their interactions with
CsgG subunits within the pore (118, 120). Deletion of
csgE attenuates curli formation and results in the pro-
miscuous transport of proteins and small molecules
through the CsgG pore (118).

Role of curli in biofilm formation

and UPEC pathogenesis

Curli have been implicated in E. coli and Salmonella
colonization of the gastrointestinal tract (124, 125) and,
in the case of UPEC, promote infection. A csgA mutant
or csgB/csgG double mutant are both attenuated during
acute infection in a murine model of cystitis, suggesting
that curli fibers contribute to UTI pathogenesis (126).
This defect in virulence could be partially explained by
the binding of curli fibers with the human antimicrobial
peptide LL-37 and the murine ortholog, cathelicidin-
related antimicrobial peptide (CRAMP) (127). This
interaction is believed to sequester these peptides and
attenuate their antimicrobial activity. Curli have also
been implicated in the binding of several additional host
proteins including the extracellular matrix protein fibro-
nectin (128, 129).

Nonpili adhesins

In addition to pili and curli, bacteria have evolved a
number of additional surface-associated proteins to in-
teract with host cell receptors and aid in adhesion and
invasion. The majority of these adhesins are anchored
to the membrane through a transmembrane region or,
in the case of Gram-positive bacteria, through attach-
ment to the cell wall via the activity of a housekeeping
sortase. Some of these adhesins recognize the cell ad-
hesion molecules, which mediate specific interactions
with other cells and with the extracellular matrix (130-

132). One of the best-characterized nonpilus bacterial
adhesins is the invasin protein from the Gram-negative
pathogen Yersinia enterocolitica, which mediates high-
affinity binding to a subset of Bl-integrins, resulting
in bacterial invasion (133, 134). Internalin, an adhesin
from the Gram-positive pathogen Listeria monocyto-
genes, functions in a similar manner through the binding
of E-cadherin (135).

In addition to recognition of cell adhesion molecules,
many nonpilus adhesins contain lectin domains and
function in a manner similar to the adhesins incorpo-
rated into pili: through the recognition of specific sugar
moieties. Two well-characterized soluble adhesins from
P. aeruginosa are LecA (PA-IL) and LecB (PA-IIL),
which have been determined to make significant con-
tributions to both biofilm formation and Pseudomonas
pathogenesis (102, 103, 136).

Role of LecA and LecB adhesins

in P. aeruginosa pathogenesis

P. aeruginosa is an opportunistic pathogen often asso-
ciated with hospital-acquired infections and is the most
common bacteria found in the sputum of patients with
cystic fibrosis (CF) (137, 138). The presence of P. aeru-
ginosa in the lower respiratory tract of CF patients
is associated with poor lung function and a decreased
quality of life and is the leading cause of mortality
among CF patients (139). Following colonization of
the airway, P. aeruginosa is believed to encapsulate
itself in a biofilm, thus promoting its persistence by in-
creasing resistance to antibiotic treatment and aiding
in the ability to adapt to the harsh host environment
(140, 141). Biofilm formation and the pathogenesis of
P. aeruginosa have been shown to involve several viru-
lence factors, including the type III secretion system and
several adhesins (142). Investigation into the adhesive
properties of P. aeruginosa revealed a significant role of
the two soluble lectin domains, LecA and LecB, which
were both found to contribute to the attachment of
P. aeruginosa to the human lung epithelial cell line A549
(136, 143). LecA and LecB are tetrameric adhesins with
four identical binding sites (144, 145). Although origi-
nally isolated from the cytoplasm of P. aeruginosa, these
lectins have since been shown to accumulate on the outer
membrane in high quantities (103, 146). Subsequent
studies have determined that LecA has specificity for
D-galactose and binds a-galactosyl residues found in
the glycosphingolipids of the lung epithelial membranes
(147, 148). Conversely, LecB has been demonstrated
to recognize L-fucose and its derivatives and has high
affinity for Lewis-a oligosaccharides (149). In addition
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to their role in bacterial adhesion to lung epithelial cells,
both LecA and LecB have been shown to contribute
to in vitro biofilm formation, likely by mediating con-
tact with biotic and abiotic surfaces as well as ini-
tiating interactions with other bacterial cells (102, 103,
136).

In vivo analysis of lecA and lecB mutants has dem-
onstrated a significantly decreased bacterial lung burden
16 hours following inoculation compared to wild-type
bacteria. LecA and LecB were also found to mediate
alveolar capillary barrier injury, facilitating the dissem-
ination of P. aeruginosa into the bloodstream (136).
This phenotype may be due in part to the cytotoxic effect
seen by purified LecA in primary epithelial cells in cul-
ture (143). These varied and significant contributions
of LecA and LecB to P. aeruginosa pathogenesis make
them exciting therapeutic targets. Indeed, inhibition of
LecA and LecB could have a 2-fold effect on P. aeru-
ginosa pathogenesis, preventing adherence to epithelial
cells to decrease invasion while disrupting preformed
biofilms to render the pathogens more susceptible to
antimicrobial therapy.

SMALL-MOLECULE ANTIVIRULENCE
THERAPEUTICS

Inhibition of Pathogen Receptor Biogenesis
The assembly and anchoring of pili to the cell surface
of pathogens requires the coordinated expression and
interaction of several proteins. An understanding of the
complexity of this assembly process has uncovered a
plethora of targets for the disruption of adhesive strat-
egies utilized by both Gram-negative and Gram-positive
pathogens summarized in this section and Table 1.

TABLE 1 Antiadhesive small molecules

1 MP048, 2c 150
2 ec240 153
3 AL1 155
4 FNO75 126
5 6e 170
6 Heptyl mannoside 180
7 5a 241
8 FIM-2238, 2ZFH238, 8e 181
9 FIM-4269, 4ZFH269, 8 188
10 7a 193
11 7b 193
12 19 194
13 4d 196

Antiadhesive Strategies for Treating Bacterial Infections

Small-molecule inhibitors

of CUP pili biogenesis

Pilicides were the first small molecules to be utilized for
the inhibition of CUP assembly (150). They belong to a
class of molecules known collectively as pyrisides. These
compounds are based upon a bicyclic 2-pyridone scaf-
fold that maintains a rigid, peptide-like conformation
that closely mimics a B-strand (Fig. 3A). Measurement
of pilicide activity in culture revealed remarkable success
in inhibiting the assembly of both P and type 1 pili as
monitored via electron microscopy (150) (Fig. 3B) and
as determined in a variety of in vitro assays, including
hemagglutination, biofilm formation, and adherence
to a bladder tissue cell line. Pilicides were originally
designed to disrupt the formation of chaperone-subunit
complexes by targeting the chaperone-subunit inter-
face. However, X-ray crystallographic studies with the
P pilus chaperone, PapD, in complex with pilicide 1 (see
Table 1) determined that the pilicide was instead bind-
ing a conserved hydrophobic region on the chaper-
one known to interact with the N-terminal domain of
the usher pore, suggesting a disruption of a key inter-
action between the chaperone-subunit complexes and
the usher (150) (Fig. 3C). In vitro binding studies with
the type 1 FimCH chaperone-subunit complex and the
N-terminal domain of the FimD usher confirmed this
hypothesis, because increasing concentrations of pili-
cide were shown to inhibit binding between these two
species (150).

Continued development of pilicides has led to a
detailed understanding of the structure-activity rela-
tionship of these compounds and has resulted in the
synthesis of molecules with vastly improved inhibition
of type 1 pilus biogenesis (151, 152). The most effica-
cious compounds inhibit type 1 pilus-mediated E. coli
biofilm formation in the low uM and high nM range.
One such pilicide, compound 2, was found to disrupt
several virulence-associated pili, including type 1 pili, P
pili, and S pili (153) (Fig. 3A), as well as flagellar mortility
(153). Growth of the cystitis isolate UTI89 in compound
2 results in a dramatic downregulation of the type 1 pilus
genes. Type 1 pilus expression is controlled by inversion
of the fimS promoter element, which can oscillate be-
tween phase ON and phase OFF orientations. Growth
in compound 2 results in fimS orientating into the OFF
phase. In addition, it results in increased levels of the
transcriptional regulators SfaB and PapB, which also
promote the phase OFF orientation of the fimS promoter
(153). Thus, the potency of pilicide 2 is in part due to the
unexpected mechanism of inducing a phase OFF orien-
tation of the type 1 pilus promoter. Additionally, pilicide
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FIGURE 3 Small molecules known as “pilicides” disrupt pilus
biogenesis. (A) Structures of two potent curlicides. Curlicide 1
disrupts type 1, P, and S pili. Curlicide 2 binds to the P pilus
chaperone PapD, inhibiting its interaction with the PapC usher.
(B) Electron micrographs demonstrating a loss of P pili on
uropathogenic Escherichia coli cells exposed to increasing
concentrations of curlicide 2 (adapted from reference 150, with
permission; copyright [2006] National Academy of Sciences,
USA). (C) Crystal structure of the two-domain adhesin FimH
complexed with pilicide (PDB ID code 2J7L).

activity against Dr pili, another type of CUP pili known
to play a role in pyelonephritis in mice and humans,
has also been confirmed, further expanding the thera-
peutic potential of these compounds in targeting UTI
(154). The exciting ability of these compounds to target
multiple CUP pili suggests that these compounds could
demonstrate broad therapeutic coverage in the clinic.
However, further testing of these compounds in ani-
mal models of infection along with pharmacological
development will be required to solidify their role as a
therapeutic.

In addition to the bicyclic 2-pyridone pilicides,
another class of small-molecule compounds has been

identified to target the PS5 pocket of the FimH pilus sub-
unit (155). This rationally designed molecule was de-
veloped to prevent the donor strand exchange reaction
between FimH and the FimG rod adaptor (Fig. 2A
and B). Because assembly of the pilus rod initiated
by FimH binding to the usher complex followed by
FimG incorporation is necessary for pilus biogenesis,
abrogation of the FimH-FimG interaction completely
abolishes pilus formation (156, 157). To identify such
a molecule, a virtual screen was performed that mea-
sured in silico docking of 2,000 compounds in the P35
pocket of FimH of the usher-bound FimCH protein
structure (155). The top compounds from this screen
were further examined in an in vitro DSE assay, resulting
in the identification of the most potent inhibitor, com-
pound 3 (Fig. 2C) (155). This compound was found
to completely inhibit type 1 pili expression when the
bacteria were grown in the presence of a 200-uM com-
pound. Interestingly, addition of compound 3 to grow-
ing bacterial cells rapidly resulted in the decrease of
surface-localized pili, suggesting that this compound
was capable of facilitating the disassembling and/or
shedding of preformed pili (155). Based on the exist-
ing crystal structures and known mechanism of action,
it is hypothesized that compound 3 may disrupt the
anchoring of type 1 pili in the outer membrane by dis-
rupting the terminal chaperone-subunit complex. Fur-
ther verification of this mechanism of action, along with
identification of the compound 3 binding site, will be
necessary to continue the development of this compound
as a therapeutic.

Small-molecule inhibitors of curli biogenesis
Another class of pyrisides has been shown to inhibit
curli assembly. The 2-pyridone scaffold’s modular na-
ture allows for the manipulation of chemical activity
through the substitution of various R groups onto the
ring. When substituted compounds were screened for
their ability to inhibit curli-dependent biofilms, it was
found that replacement of a cyclopropyl group with a
CF3-phenyl substituent (Fig. 4A) inhibited curli fiber
formation at a concentration of 250 uM (Fig. 4B) (126).
To determine if this inhibition occurred during the
ordered assembly of CsgA into amyloid fibers, various
concentrations of compound 4 were added in vitro to
purified CsgA (126). Compound 4 was able to com-
pletely prevent amyloid formation of purified CsgA
when present in 5-fold excess. This inhibition is believed
to occur via a direct interaction with soluble CsgA, thus
preventing its transition into an amyloid-competent state
prior to polymerization.

10

ASMscience.org/MicrobiolSpectrum


http://www.ASMscience.org/MicrobiolSpectrum

[Compound 4]

o
FIGURE 4 Curlicides inhibit biofilm formation. (A) Structure
of the curlicide 4 compound. Curlicide compounds are based
on 2-pyridine scaffold functionalized with a variety of sub-
stituents. (B) Inhibition of extracellular curli formation in the
presence of increasing concentrations of curlicide 4 (adapted
from reference 126).

Interestingly, compound 4 has also been demon-
strated to inhibit type 1 pilus biogenesis, suggesting its
ability to inhibit multiple adhesive strategies utilized by
UPEC to colonize the bladder and underscoring its pro-
mise as a therapeutic for UTI. Indeed, studies in a murine
model of cystitis demonstrated that E. coli pretreated
with compound 4 is significantly attenuated during
infection when compared to untreated bacteria (126).
Iterative rounds of synthetic chemistry and structural
studies continue to provide further insight into the rela-
tionship between curlicide structure and potency (158).
Additionally, structural similarities between curli fibers
and other amyloid proteins have prompted investiga-
tors to test the inhibitory effects of curlicide compounds
in other disease states. Indeed, specific curlicides have
shown excellent efficacy in the in vitro inhibition of
AP and a-synuclein polymerization, two amyloids asso-
ciated with Alzheimer’s and Parkinson’s disease, respec-
tively (159, 160). This ability to target amyloids in a
nonspecific manner has provided generalizable insights

Antiadhesive Strategies for Treating Bacterial Infections

at the molecular level into the process of amyloid for-
mation. Further knowledge of aggregative mechanisms
and their role in disease pathology will help inform the
development of therapeutics that target specific regions
vital to amyloid pathology.

Small-molecule inhibitors of sortase

Sortase enzymes play a unique role in Gram-positive
bacterial physiology and are essential for the virulence of
many pathogens. Gram-positive organisms encode up to
four distinct classes of sortases that can be classified
based on the substrates they act upon and the nucleo-
phile they employ to resolve the acyl enzyme interme-
diate (76). The class A and B sortases are responsible for
the covalent attachment of surface-anchored proteins to
the cell wall. Thus, the pentaglycine cross-bridge of the
peptidoglycan precursor lipid IT acts as the nucleophile
in the transpeptidation reaction (161). Although they
are structurally homologous to one another, the class
A sortase (commonly referred to as the housekeeping
sortase) acts on a majority of surface-associated pro-
teins, while the class B sortase functions to specifically
anchor heme transporters to the cell wall (162). Class C
sortases are responsible for the covalent attachment
of pilin subunits in the assembly of pili and are encoded
in a pilus-specific manner within the pilus operons
(71). Thus, while pilus biogenesis requires sortase C,
anchoring of the pilus to the cell wall requires the ac-
tivity of sortase A. Finally, the class D sortase mediates
the attachment of envelope proteins to the cell wall
and is believed to play a specific role in sporulation
(163).

The conservation of the class A sortase and the inte-
gral nature of the process it facilitates have prompted
investigators to aggressively pursue therapeutic inhibi-
tors of sortase function. Indeed, virulence of Gram-
positive pathogens, including E. faecalis and Staphylo-
coccus aureus, is severely attenuated in animal models
when the class A sortase is deleted (164, 165). These
findings have resulted in the pursuit of many strategies
to discover inhibitors of sortase A function, including
screening of natural products, high-throughput screen-
ing of chemical libraries, and structure-based in silico
screening of compounds (Table 2). While all of these
inhibitors were originally screened against sortase A,
further analysis demonstrated inhibition of both sortase
B and C for many compounds, demonstrating the con-
servation of sortase protein structure and its mechanism
of action.

The first major attempt to identify natural products
with sortase inhibitory activity focused its efforts on the
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TABLE 2 Antiadhesive strategies targeting the Gram-positive sortases®

Surface protein measured

1Cs0 measured during inhibition of

Inhibitor Origin of inhibitor from in vitro assay sortase in culture References
Methanethiosulfonate Synthetic N.D. Seb anchoring 242
p-hydroxymercuribenzoic acid Synthetic N.D. Seb anchoring 242
B-Sitosterol-3-O-glucopyranoside Fritillaria verticillata (plant) 18 pg/ml Binding to fibronectin 168
Berberine chloride Callosobruchus chinensis (plant) SrtA: 8.7 pg/ml Binding to fibronectin 167, 243
SrtB: 6.3 pg/ml
Psammaplin A1 Aplysinella rhax (sponge) SrtA: 39 pg/ml Binding to fibronectin 243
SrtB: 23 pg/ml
Bromodeoxytopsentin Topsentia genitrix (sponge) 19.4 pg/ml Binding to fibronectin 244
Curcumin Curcuma longa (plant) 13 pg/ml Binding to fibronectin 245
Flavonoid phenols Rhus verniciflua (bark) and SrtA: 37-52 uM Clumping 246
natural products SrtB: 8-36 uM
Diazo/chloromethyl ketone Synthetic, substrate mimetic N.D. N.D. 247
3,3,3-trifluoro-1-(phenylsulfonyl)-  Synthetic 190 upM Binding to fibronectin 248
1-propene
Phosphinic-peptidomimetic Synthetic, transition state mimic 10 Mm N.D. 249
Diarylacrylonitrile Small-molecule library SrtA: 2.7 pg/ml Binding to fibronectin 243, 250
SrtB: 10 pg/ml
Aryl B-amino(ethyl)ketones Small-molecule library SrtA: 4.8 uM N.D. 169
SrtB: 14 uM
SrtC: 15 uM
3-(4-pyridinyl)-6-(2- Small-molecule library Staphylococcus aureus ~ Spa anchoring 170
sodiumsulfonatephenyl)[1,2,4] SrtA: 9.3 uM Binding to fibrinogen
triazolo[3,4-b][1,3,4]thiadiazole] Streptococcus pyogenes
(5), see Table 1 SrtA: 0.82 uM

aN.D., not determined
tAdapted from reference 251

screening of extracts from 80 Korean medicinal plants
(166). This work led to the identification of several
compounds (summarized in Table 2) that demonstrate
varying degrees of inhibition i vitro and in vivo. Most
notable were the isoquinoline alkaloids from the rhi-
zomes of Coptis chinensis (167) and B-sitosterol-3-O-
glucopyranoside from Fritillaria verticillata, which were
determined to have an ICsq of 18.3 pg/mL and 15 pg/ml,
respectively (168). These compounds demonstrated in-
hibition of sortase enzymatic activity iz vitro, but their
utilization in bacterial culture resulted in a growth de-
fect (167, 168). Given that a sortase A mutant behaves
similarly to wild type when grown in culture, these
findings suggest that some compounds may target more
than one cellular process, resulting in the measured
pleiotropic effects. Future work will look to expand
on these studies in an attempt to understand the mech-
anism of inhibition of sortase activity, such that spe-
cific inhibitors of sortase function can be identified and
optimized for therapeutic use.

In addition to the screening of natural products, high-
throughput screens of chemical libraries have led to the
identification of several compounds that demonstrate

both reversible and nonreversible inhibition of sortase
activity. One class of inhibitors which demonstrated
the most promise were the aryl B-amino(ethyl) ketones
(AEEK) (169) (Table 1). These compounds irreversibly
inhibit sortase A with an ICsq in the low micromolar
range and have a simple, drug-like structure. Prelimi-
nary investigations into the structure-activity relation-
ship have identified the value of anionic substituents
in the para position on the aryl ring. Structural stud-
ies have also helped elucidate a model of inhibition,
which involves the generation of an electrophilic inter-
mediate that reacts with the catalytic cysteine, result-
ing in irreversible inactivation of the thiol active site
(169). While these inhibitors hold promise, i vivo ana-
lysis of these compounds will be required for further
verification.

Currently, the most successful class of sortase inhib-
itors has come from a rational design approach using
the crystal structure of sortase A:substrate complex
(PDB ID code 2KID) to virtually screen 300,000 com-
pounds for putative binding to the active site (170)
(Fig. SA). From this screen, 105 compounds were se-
lected for further i1 vitro characterization. Identification
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FIGURE 5 Potent inhibitors of sortase A function. (A) X-ray crystal structure of sortase A
from Staphylococcus aureus (PDB ID code 2KID) with in silico docking of compound 5,
which binds directly to the active site of the enzyme (adapted from reference 170,
with permission). (B) Structure of the sortase inhibitor compound 5, which inhibits sortase
A from S. aureus with an ICsg of 9.3 uM and Streptococcus pyogenes with an ICsq of

0.82 pM.

of a potent inhibitor of recombinant S. aureus sortase A
activity followed by synthetic optimization produced
compound 5 (Fig. 5B), which demonstrated an ICsq of
9.3 uM (170). This compound was found to inhibit
sortase A in a reversible fashion and was demonstrated
to directly bind to sortase A with a K4 = 8.8 uM. In vivo
analysis of the influence of compound 5 on S. aureus
in culture demonstrated no influence on growth but
revealed a decrease in incorporation of cell wall-
anchored proteins (170). One such protein showing
decreased incorporation is protein A (SpA), which is
known to aid bacterial subversion of phagocytosis by
host immune cells by the binding the Fcy and Fab
domains of host immunoglobins (171). To determine
compounds 5’s potential as a therapeutic, the ability of
intraperitoneal doses of the compound to protect mice
from a lethal challenge of S. aureus was tested. These
studies found that intraperitoneal dosing of compound
5 in mice resulted in a significant increase in murine
survival, demonstrating the anti-infective capabilities of
sortase inhibitors (170). Interestingly, compound 5 was
also found to inhibit the sortase from Streptococcus
pyogenes with an ICsq of 0.82 pM, suggesting that it
could have broad therapeutic use in the clinic (170).
Further optimization of compound 5 and validation in
additional animal models could make the targeting of
sortase activity a legitimate therapeutic option.

Inhibition of Pathogen Binding

by Receptor Analogs

Recognition of surface-exposed glycans by a pathogen is
often characterized by a relatively weak association be-
tween the pathogen carbohydrate-binding domain (CBD)
and the host glycoconjugate (34). To compensate for
this relatively weak interaction, bacteria typically express
multiple copies of the CBD to increase the avidity for
the target and strengthen the interaction between the
pathogen and the host. One strategy that is commonly
employed to target this interaction involves the intro-
duction of small “glycomimetics” to the system, which
saturates the CBDs by imitating their natural ligand.
This saturation weakens the pathogen’s interaction with
host tissue, increasing susceptibility to natural mechani-
cal expulsion. The efficacy of this treatment approach
is thus based on the generation of high-affinity glyco-
mimetics that can outcompete the natural ligand for
the CBD at physiologically plausible concentrations. To
accomplish this task, both high-affinity monovalent as
well as multivalent inhibitors have proven to hold great
promise (Table 3).

FimH antagonists: mannosides

The type 1 pilus adhesin, FimH, mediates adherence
of UPEC to the bladder epithelium and is essential for
infection in a murine model of cystitis (172). The lectin
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TABLE 3 Antiadhesive strategies utilizing receptor and adhesin analogss

Bacterium Method of validation
Receptor analogs
Campylobacter jejuni Murine gastrointestinal model

Helicobacter pylori Rhesus model
Listeria monocytogenes
Streptococcus pneumoniae
Yersinia pestis
Streptococcus sobrinus
Streptococcus suis

Escherichia coli (type 1 pili)

Rabbit and rat nasopharynx

Rat oral cavity
Murine model of peritonitis
Murine model of cystitis

E. coli (P pili)

E. coli (F1C pili)

Pseudomonas aeruginosa (LecA)
P. aeruginosa (LecB)

In vitro binding assay
In vitro binding assay
Murine model of lung infection
Murine model of lung infection

Human epithelial colorectal cell line

Human epithelial respiratory cell line

Inhibitor References

Fucosyloligosaccharides of human milk 252

3-sialyllactose 253
Xylo-oligosaccharides 254
6'-sialylneolactotetraose 255
GalNAcB1-3Gal and GalNAcB1-4Gal 256
Oxidized al,6glucan 257
Tetravalent galabiose 258-262
Mannosides 181, 182, 188-190,
263-267
Multivalent galabiose 268-270
Multivalent GalNAcB1-4Gal 271
Galactosides 193, 272-276
Fucosides/mannosides 193, 195, 196,
277-279

Adhesin analogs
Streptococcus mutans
of S. mutans

Streptococcus gordonii In vitro binding and biofilm assay

Enterotoxigenic Escherichia coli
enterocytes

Gram-negative bacteria and

Staphylococcus aureus

Human studies monitoring recolonization

Horse red blood cells and calf ileal

Multiple human tissue culture cell lines

Full length streptococcal antigen (SA) 280, 281
I/ll and 22 residue peptide

Peptides of the adhesin Streptococcus 282
gordonii surface protein SspB

Truncated versions of K99 pili 283

MAM7 197, 200

Adapted from references 284, 285.

domain of FimH has been demonstrated to mediate
binding to several glycoproteins, including uroplakin
Ia (UPla), Tamm-Horsfall protein, and p1 and a3 in-
tegrins (173-175). Recognition of this diverse set of
host ligands occurs through a stereochemically specific
interaction with mannose. Crystallographic studies of
FimH complexed with a number of mannose derivatives
have revealed the structural basis of mannose recog-
nition on a molecular level. The FimH lectin domain
(FimHg) is composed of an 11-stranded elongated
B-barrel with a jelly roll-like topology with a mannose-
binding pocket located at the tip of the two-domain
protein (176-178). This binding pocket is comprised
of several residues, which make extensive hydrogen
bonding and hydrophobic interactions with p-mannose.
Outside of this pocket is a hydrophobic ridge, which
includes two tyrosine residues that form the so-called
tyrosine gate (Fig. 6A). Genetic analyses of hundreds of
fimH sequences have found these distinct regions to be
invariant, further arguing for their importance in the
pathogenic cascade (177, 179). Indeed, interactions with
the tyrosine gate and other hydrophobic residues found
within the ridge are believed to mediate the increase in
affinity seen for many mannose-containing oligosaccha-

rides, including Mana1,3Manf1,4GlcNAcB1,4GIcNAc

(oligomannose-3). Crystallization of FimH; with oligo-
mannose-3 confirmed this hypothesis and has directed
the development of mannosides that initiate interactions
with this hydrophobic ridge (180). Interestingly, one of
the first mannosides, butyl a-p-mannoside, was initially
identified when it was serendipitously copurified and
crystallized with FimHy (178). This mannoside displayed
a 15-fold increase in affinity compared to p-mannose,
largely resulting from the hydrophobic interaction be-
tween the alkyl chain and the tyrosine gate (178).

Subsequent rounds of rational compound design and
testing continued to examine the influence of alkyl chain
length on affinity. In this manner, heptyl o-pD-mannoside
(compound 6) was identified as a lead compound, be-
cause its binding was shown to be 30-fold tighter than
butyl a-p-mannoside and 600 times tighter than the
natural ligand, p-mannose (Fig. 6B) (178). The thera-
peutic efficacy of this compound was tested in a murine
model of cystitis, which demonstrated that incubation
of UPEC with compound 6 prior to infection in mice
resulted in a significant decrease in bacterial burden
in the bladder 6 hours postinoculation (180). This was
the first study demonstrating the utility of mannosides
in vivo, highlighting the therapeutic potential of target-
ing FimH.
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FIGURE 6 Mannosides are potent inhibitors of FimH binding. (A) Crystal structure of FimH
complexed with mannoside 8, which binds to FimH with an affinity over 1 million times
higher than its natural substrate, b-mannose (PDB ID code 3MCY). (B) Structure of a variety
of mannosides, each rationally designed to increase affinity for FimH by interacting
with the hydrophobic ridge outside of the mannose-binding pocket. Although heptyl
a-b-mannoside 6 successfully bound FimH with a 600 times increased affinity when
compared to b-mannoside, the biphenyl substituents ultimately proved to be the most

effective compounds (7, 8, and 9).

Since these initial findings, further development of
mannosides has continued to focus on structure-based
optimization of affinity. To exploit n-n stacking inter-
actions with the tyrosine gate and interactions beyond
the binding pocket, the alkyl chain was substituted
with a variety of aromatic substituents. Ultimately, it
was found that the affinity of biphenyl a-pD-mannosides
(compounds 7, 8, and 9) for FimH was much higher
than aryl- or heptyl-mannose (compound 6), resulting
in a new line of potent therapeutic candidates (Fig. 6B).
Further substitutions to these rings have focused on the
addition of electron withdrawing groups to decrease the
electron density of the aryl ring and increase n-r stack-
ing (Fig. 6B). These charged residues have also been
found to facilitate hydrogen bond formation with Arg98,
which resides right outside the binding pocket (Fig. 6A).
Additionally, it is believed that increased binding affinity
of compounds can also be related to a decrease in con-
formational flexibility and thus a decrease in the entropic
cost of binding (181-183).

Iterative refinement of these compounds has necessi-
tated the use of multiple modalities to assess mannoside
potency. Inhibition of epitope binding can be mea-
sured directly by examining the inhibition of the type
1-dependent hemagglutination of guinea pig red blood
cells, which present mannosylated epitopes on the sur-
face of the cell (181). Additional assays include inhibi-

tion of bacterial adherence to plastic plates that have
been coated in mannosylated bovine serum albumin
or inhibition of type 1-dependent adherence to hu-
man epithelial carcinoma bladder 5637 cells expressing
mannosylated uroplakins (184, 185). Measurement of
mannoside binding to FimHy can also be measured by
isothermal titration calorimetry, differential scanning
calorimetry, or biolayer interferometry. Comparative
analyses of mannosides using a multitude of these dis-
tinct methods have consistently produced similar re-
sults, demonstrating that each assay measures aspects of
mannoside affinity. Combined with structural studies,
this research has led to the development of one of the
most potent mannosides, compound 9 (Fig. 6B), which
can inhibit FimH function in the nanomolar concentra-
tion range as measured by hemagglutination. Indeed,
compound 9 is over 1 million times more potent than p-
mannose as measured by hemagglutination.

Continued improvement of this potent compound and
others has focused on improving their pharmacokinetic
behavior through a number of approaches, including the
use of bioisosteres, as well as the development of prodrugs
(186, 187). The culmination of this work has led to the
development of small, orally bioavailable compounds ca-
pable of preventing acute UTIs and treating chronic UTTs
(188). Furthermore, prophylactic use of mannosides was
found to significantly reduce bacterial burden in a murine
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model of CAUTI (189). Ongoing research continues to
improve the pharmacokinetic behavior of these drugs to
optimize their therapeutic potential in human disease.
While these efforts have largely been based around
monovalent inhibition of FimH, other investigations
have been directed at the development of multivalent
compounds designed to interact with more than one
FimH lectin domain. Attachment of compound 6 to a
cyclodextrin core has resulted in compounds capable of
binding multiple adhesins, thus increasing compound
affinity relative to their monovalent counterparts (190).
This increase in affinity has resulted in a significant
improvement in the iz vivo efficacy during acute UTI
compared to the monovalent heptyl mannoside. How-
ever, delivery of these compounds was performed by
transurethral administration (190), making their po-
tential as a prophylactic tool or treatment in patients
susceptible or suffering with a UTT uncertain.

Multivalent inhibitors of

P. aeruginosa LecA and LecB

Interaction of lectin domains with specific glycosidic
ligands is often relatively weak and usually relies upon
multiple interactions to increase the overall avidity. The
affinity of LecA and LecB for monomeric galactose and
fucose has been determined to be 87.5 pM and 3 pM,
respectively (191, 192). However, several multivalent
inhibitors have been found to bind in the nanomolar
range, supporting the utility of a multivalent approach
to lectin inhibition (Table 3). This “clustering” effect has
been exploited in the design of multivalent glycocon-
jugate inhibitors of the LecA and LecB soluble adhesins
from P. aeruginosa. These synthetic glycoclusters have
utilized a variety of scaffolds including peptides (192),
modified oligonucleotides (192), fullerenes (192), and
trithiotriazine (192) with either galactose or fucose at-
tached to target LecA and LecB, respectively.

Two of the most thoroughly examined inhibitors of
the LecA and LecB adhesins are the multivalent galac-
tosylated and fucosylated calixarenes (193). These tet-
ravalent compounds contain triethylene glycol linkers
that are attached to the calixarene core and functional-
ized with either galactose (compound 11) or fucose
(compound 10) at the distal tip (Fig. 7A). Measurements
of the affinity of these compounds by isothermal titra-
tion calorimetry were able to demonstrate nanomolar
Kgs of 48 and 176 nM for compounds 10 and 11, re-
spectively (193). These experiments also demonstrated
that these compounds functioned in a multivalent man-
ner, as determined by analysis of the isothermal titration

calorimetry measurements (193). Given the spacing be-
tween subunits within the tetrameric proteins and the
length of the ethylene glycol linkers, structural analysis
suggested that these inhibitors interacted with separate
epitopes on individual tetrameric proteins. Binding to
glycomimetic compounds was also found to correlate
with in vitro bacterial phenotypes. Micromolar concen-
trations of either drug were found to significantly inhibit
P. aeruginosa adherence to A549 epithelial cells, re-
ducing binding to between 70 and 90% of wild type
levels (193). Additionally, both compounds 10 and 11
were found to inhibit biofilm formation, albeit at the
fairly high concentration of 5 mM (193). The efficacy
of these compounds in vivo was also investigated by
preincubating P. aeruginosa with compound prior to
intranasal instillation in a mouse model of pneumonia.
Incubation with either 1 or 5 mM of either compound
resulted in a significant reduction in bacterial burden in
the lung and was associated with decreased alveolar
capillary permeability, which is directly correlated with
P. aeruginosa—induced lung injury (193). Despite the
high concentrations needed to obtain in vivo pheno-
types, these studies validate this anti-LecA and -LecB
approach, providing an impetus to continue biochemical
and pharmacokinetic optimization of these compounds
as therapies for P. aeruginosa infections.

In addition to a multivalent approach, development
of both divalent and monovalent inhibitors of LecA and
LecB has also been attempted (Table 3). These efforts
have involved modification of galactose and fucose with
aglycon structures to generate additional contacts with
protein residues outside of the binding pocket, thus in-
creasing the affinity and specificity of the compound for
their cognate lectin. In the case of LecA, aromatic agly-
con structures have proved to be successful, especially
those containing a naphthalene ring (Fig. 7B compound
12) (194). For LecB, optimization of the disaccharide
substructure 1-Fucf1-GlcNAc from Lewis-a identified a
relatively high-affinity molecule with a K4 = 290 nM
(195). However, cross-reactivity of this compound with
the lectin DC-SIGN, which is found on the surface of
macrophages and dendritic cells, was identified as a
potentially harmful side effect (195). To circumvent this
problem, additional compounds utilizing mannose in
place of fucose have been generated. While LecB has a
relatively low affinity for mannose compared to fucose,
modification of C6 carbon on mannose has resulted in
high-affinity compounds, with ICso approaching the low
uM range (Fig. 7C compound 13) (196). Continued de-
velopment in this field will hopefully lead to new ther-
apeutics for the treatment of P. aeruginosa infections.
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FIGURE 7 Inhibitors of soluble lectins LecA and LecB. (A) Structural depiction of the
tetravalent calixarene scaffold, which can be functionalized with galactose and fucose
moieties using triethylene glycol linkers to form compounds 11 and 10, respectively.
(B) Monovalent inhibitor of LecA 12 binds with a K4 of 4.2 uM. (C) Monovalent inhibitor of

LecB 13 activity binds with a K4 of 3.3 uM.

Inhibition of Pathogen Binding

by Adhesin Analogs

While the approaches described above have attempted
to competitively inhibit adhesin binding by mimicking
the adhesin’s natural ligand, inhibition of adherence can
also be achieved through delivery of adhesin analogs
that compete with the bacteria for their natural recep-
tor (Table 3). This approach often utilizes peptide-like
inhibitors as opposed to the glycomimetics described
above, but it requires the same stable, high-affinity inter-
actions to be successful. Additionally, adhesin analogs
must avoid disruption of the host cell function, which
can occur with host cell receptor recognition.

MAM?7, a peptide-like inhibitor of
Gram-negative and Gram-positive infections
The Gram-negative outer membrane protein multivalent
adhesion molecule 7 (MAM?7) was first identified in the
pathogen Vibrio parahaemolyticus and found to consist
of a transmembrane motif followed by seven mamma-
lian cell entry (mce) domains, all of which are required
for attachment to cultured HeLa epithelial cells (197).
Utilizing a bioinformatics approach, it was determined
that MAM?7, or its 6-mce domain counterpart MAMS6,

was highly conserved among Gram-negative pathogens
but absent in Gram-positive bacteria (197). MAM?7 is
believed to mediate attachment to host cells via inter-
actions with host fibronectin and the host membrane
lipid phosphatidic acid and was shown to augment
cell death mediated by the type III secretion system (197,
198). Interestingly, prior addition of nonpathogenic
bacteria expressing MAM?7 was able to ameliorate in-
fection of cultured Hela epithelial cells infected with
a variety of Gram-negative pathogens, including ad-
ditional Vibrio species, Yersinia pseudotuberculosis,
enteropathogenic E. coli, Klebsiella pneumoniae, Acine-
tobacter bauwmanmnii-calcoaceticus, and P. aeruginosa
(197, 199).

It has also been demonstrated that nonpathogenic
bacteria expressing MAM?7 or purified recombinant
MAM?7 immobilized on latex beads are able to pro-
phylactically inhibit cytotoxicity in a tissue culture
model of infection of either HeLa epithelial cells or 3T3
fibroblasts (197, 199). Delivery of MAM7 involved a
30-minute preincubation of the tissue culture cells with
either the MAM7-expressing bacteria at a multiplicity
of infection of 100 or the addition of MAM7-coated
latex beads at a concentration of 7.5 mg protein/10°
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beads/well (199). This decrease in cytotoxicity results
from a decrease in MAM-7-mediated adhesion, which is
believed to occur primarily through competition with
the pathogen’s MAM7 homolog.

MAMY7 can also be effective at outcompeting non-
MAM?7 adhesins for the same receptor. For example,
S. aureus is known to interact with the extracellular
glycoprotein fibronectin. Preincubation of HaCaT, hu-
man dermal fibroblast, or HelLa tissue culture cells
with 500 nM of bead-coupled MAM?7 significantly
reduced attachment of S. aureus (200). This reduction
is similar to that observed when beads coated with
the staphylococcal fibronectin-binding protein (FnBPA)
or the S. pyogenes fibronectin-binding protein F1 are
preincubated with tissue culture cells prior to the intro-
duction of S. aureus (200). It should be noted that
treatment with F1- or FnBPA-coated beads disrupted
host cell function, resulting in a delay in wound heal-
ing due to impaired matrix formation and cellular
adhesion, even in the absence of a pathogen (200).
Thus, MAM?7 is uniquely able to prevent adherence
of S. aureus without contaminant perturbation of the

host cell environment. The broad coverage of MAM?7 as
an inhibitor of both Gram-positive and Gram-negative
infections makes it an exciting candidate as a broad-
spectrum antivirulence therapeutic. However, the size
of MAM7 (~840 amino acids) and the lack of in vivo
data still represent major obstacles to overcome in the
course of development of this concept into a stable, high-
affinity therapeutic.

INHIBITION OF PATHOGEN BINDING
BY ANTIADHESION ANTIBODIES
AND VACCINES

Adhesin-based vaccines have proven to be highly suc-
cessful in the prevention of bacterial infections in a
number of animal models (Table 4). This strategy relies
upon vaccination with an essential adhesin required
for colonization and disease. Generation of antibodies
against the adhesin can result in disruption of adhesin-
receptor interactions by occlusion of the binding pocket
in an orthosteric manner. Alternatively, antibodies may
disrupt binding via allosteric interactions by blocking a

TABLE 4 Antiadhesive strategies utilizing antiadhesin vaccines or antibodies

Bacterium

Salmonella enterica
serovar Typhi

Adhesin targeted
T2544

Details
Active and passive immunization provides limited protection 286

References

S. enterica serovar Typhi  SadA Active vaccination provides limited protection 287

Enterotoxigenic K88ab, K88ac, FedA, and FedF Vaccination of proteins expressed in live attenuated 209, 210

Escherichia coli (ETEC) Salmonella Typhimurium strain

Enterotoxigenic E. coli FaeG major subunit of K88ac Active vaccination with heat-labile (LT) toxin and the A 288

fimbriae subunit of shiga toxin (STa) is protective

Enterohemorrhagic E. coli Intimin Active vaccination with fusion protein of intimin and two 289
shiga toxin antigens provides protection

Uropathogenic E. coli FimCH Active and passive vaccination provides protection 202, 203

Pseudomonas aeruginosa Type IV pilin adhesin Generation of an effective antibody response relied on 290
coupling of the N- and C-terminal to a carrier,
provides protection against multiple strains

Proteus mirabilis MrpH, MR/P pilus adhesin Active vaccination as fusion with cholera toxin provides 205
significant protection

Enterococcus faecalis EbpA Active vaccination of full length EbpA or its N-terminal 82
provides protection

Bordetella pertussis Hemagglutinin adhesin Both adhesins are included in the vaccine against whooping 291

and pertactin cough and function partly by inhibition of adhesion

Streptococcus mutans Streptococcal antigen (SA) I/11 Application of a monoclonal antibody prevents tooth 292, 293
colonization

Staphylococcus aureus Clumping factor A, Both active and passive vaccination provided protection 294

fibronectin-binding protein A,
and fibronectin-binding protein B

against prosthetic-device infection

S. aureus Collagen-binding protein (CNA) DNA vaccine generated antibodies against CNA, but does 211
not provide protection against intra-peritoneal infection
S. aureus Clumping factor A (CIfA), DNA vaccine including the sortase enzyme provides 212
fibronectin-binding protein (FNBPa) strain-dependent protection
Streptococcus Surface adhesin A and Intranasal vaccination reduced colonization 295
pneumoniae surface protein A
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conformational change within the adhesin required for
ligand recognition (201). Either of these mechanisms,
when fully realized, result in the host’s elimination of the
pathogen by natural mechanisms. This protection has
been seen following both active and passive vaccination,
suggesting that the development of a monoclonal anti-
body may also be highly effective at treating active
infections.

Vaccines for urinary tract infections

Elucidation of the role of type 1 pili and the FimH
adhesin led to one of the first adhesin-based vaccines.
Vaccination of mice with a truncated version of FimH
corresponding to the lectin domain or with the FimC-
FimH chaperone-adhesin complex produced high serum
titers of anti-FimH IgG (202). These antibodies were
also detectable in the urine and were shown to reduce
colonization of the bladder mucosa by 99% following
transurethral challenge in mice with a model UPEC
strain (202). Independent ex vivo studies further verified
that these antibodies were able to recognize FimH and
prevent the binding of UPEC to human bladder epithe-
lial cells (202). Protection of neutropenic mice from UTI
by vaccination with FimH further demonstrated that
elimination of bacteria was occurring independently of
neutrophilic involvement, supporting the notion that
protection occurs via inhibition of bacterial adhesion
and subsequent mechanical elimination of UPEC strains
(202).

Nonhuman primate trials subsequently demonstrated
that immunization of monkeys with FimCH was found
to be effective, generating a strong IgG response and
preventing infection in three out of four animals, com-
pared to a 100% infection rate in the control group
(203). Further, vaccination was found to have no impact
on the E. coli niche in the gut microbiota, demonstrating
the specific targeting of pathogenic E. coli in the urinary
tract (203). Continued development of this vaccine has
primarily been focused on inducing a greater immune
stimulation in an attempt to increase the concentration
of protective antibodies near the mucosal surface. To
this end, investigators have attempted to fuse FimH to
the flagellin FliC to stimulate a stronger acute inflam-
matory response (204). Similarly, coadministration of
the FimC-FimH vaccine with a synthetic analogue of
monophosphoryl lipid A has resulted in a phase 1 clin-
ical trial that began in January 2014.

Adhesin-based vaccines for other uropathogens, in-
cluding Proteus mirabilis and E. faecalis, have been
shown to be successful in animal models. Vaccina-
tion with the adhesin capping the MR/P pilus from
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P. mirabilis was found to significantly reduce bladder
bacterial burdens compared to unvaccinated controls
(205). Additionally, vaccination with the pilus ad-
hesin EbpA from E. faecalis reduced the bladder bac-
terial burden 1,000 times, representing a significant
amount of protection against infection (82). Similar to
the FimH vaccine, this protection was found to be spe-
cific to the adhesin, EbpA, and was demonstrated to
disrupt EbpA’s interaction with fibrinogen. Interest-
ingly, vaccination with an EbpA construct lacking the
metal-binding MIDAS motif necessary for fibrinogen
recognition did not result in the production of protective
antibodies (82).

Additional antiadhesive vaccine strategies

In addition to the straightforward adhesin-based vac-
cine strategies described above wherein soluble protein
is introduced directly into the animal, investigators are
also pursuing a number of alternative approaches de-
signed to ensure that adhesins are properly oriented
and displayed in a physiologically relevant conformation
for antibody generation. For example, development of
a vaccine against the Gram-negative pathogen Neisseria
meningitidis required the delivery of adhesin antigens
encapsulated in outer membrane vesicles to ensure pro-
per presentation. Previous attempts at vaccination had
focused simply on the delivery of adhesins: NadA, fac-
tor H binding protein (fHBP) and Neisseria heparin
binding antigen (NHBA) (206-208). Similarly, a vaccine
against enterotoxigenic E. coli (ETEC) successfully
developed for postweaning pigs utilizes a Salmonella
enterica serovar Typhimurium strain that expresses
and displays the E. coli imbrial components (K88ab,
K88ac, FedA, and FedF) (209, 210). Although this
vaccine is effective, additional care must be taken when
vaccinating with live strains to ensure that no live,
genetically modified bacteria are introduced into the
environment.

Finally, some studies have been directed toward the
development of DNA vaccines, which involve the direct
delivery of DNA encoding the pathogen-derived antigen.
Expression, processing, and presentation of a DNA an-
tigen are believed to occur in a more efficient manner,
leading to both a humoral and cellular response. DNA
vaccines against adhesins from enterotoxigenic E. coli,
S. pneumoniae, and S. aureus have been attempted
with variable success (211-214). As a whole, the target-
ing of adhesin-receptor interactions through vaccina-
tion has shown great promise, leading to the successful
development of several novel therapies for both Gram-
negative and Gram-positive pathogens (Table 4).
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DIETARY SUPPLEMENTS AND PROBIOTICS
AS INHIBITORS OF BACTERIAL ADHESION

There are several cited examples of fruits, plants, and
milk that possess the ability to inhibit bacterial adher-
ence to a variety of tissues (Table 5) (215). Extraction
and characterization of the active constituents from
these products suggest that they often function as recep-
tor analogs or adhesin inhibitors. A number of extracted
plant phenols have been shown to prevent attachment
by a number of bacteria, including Streptococcus
mutans and Helicobacter pylori, which are known to
cause dental caries and gastric ulcers, respectively (216—
218). However, the exact mechanism or active compo-
nent of the majority of these inhibitors is unknown.
Some of the most thoroughly studied extracts come from

TABLE 5 Antiadhesive strategies utilizing dietary supplements?

Plant

Plant derivatives
Camilla sinensis (green tea)

Active ingredient

(-) gallocatechin gallate

Green tea extract, (-) epicatechin gallate,

cranberries (Vaccinium macrocarpon), which have long
been recognized for their possible preventative and
therapeutic utility toward UTIs (219). Although some
studies of elderly and young women suggested that
regular intake of cranberry juice results in a significant
reduction in bacteriuria, additional studies have not
shown a significant difference (220-222). However,
high-molecular-weight polyphenols extracted and puri-
fied from cranberry extracts have demonstrated the
ability to inhibit bacterial binding of E. coli (223),
N. meningitidis (224), and S. mutans (225) to host tissue
in vitro. While the mechanism of inhibition in many
of these cases has not yet been fully elucidated, in the
case of UTIs it is possible that the high level of fruc-
tose present in most cranberry juices may bind to the

Bacterium REEIER S

[¢2]

Helicobacter pylori, Staphylococcus aureus, 21
Porphyromonas gingivalis

Vaccinium spp. Cranberry polyphenols Escherichia coli, Neisseria meningitidis, 223-225
Streptococcus mutans, H. pylori
Curcuma longa (turmeric) Essential oil components S. mutans 296
Nidus vespae (honeycomb Chloroform/methanol fraction S. mutans 297
extract from Polistes spp.)
Paullinia cupana (guarana) Tannins Streptococcus mutans 216
Psidium guajava Guaijaverin S. mutans 298
Vitis (red grape marc) Polyphenols S. mutans 217
Azadirachta indica (neem stick) N.D. Streptococcus sanguis 299
Gilanthus nivalis (snowdrop) Mannose-sensitive lectin E. coli 300
Gloiopeltis furcata and Sulfated polysaccharides Streptococcus sobrinus 301
Gigatina teldi (seaweeds)
Melaphis chinensis Gallotannin S. sanguis 299
Persea americana (avocado) Tannins S. mutans 302
Legume storage proteins Glycoprotein E. coli 303
Milk constituents
Human milk Fucosyloligosaccharides E. coli 304
Mammalian milk Free oligosaccharides Neisseria meningitidis 305
Human milk Polymeric glycan Pseudomonas aeruginosa and 306
Chromobacterium violaceum
Human milk Lactoferrins Shigella spp. 307
Human milk Caseins S. mutans 308
Human milk Caseinoglycopeptides H. pylori 309
Human milk Glycoprotein Staphylococcus aureus 310
Human milk Neutral oligosaccharides Streptococcus pneumonia and 311
Haemophilus influenzae
Human milk Sialylated glycoproteins Mycoplasma pneumoniae 312
Porcine milk Glycosylated proteins H. pylori 227
Human milk Sialylated poly(N-acetyl lactosamine) Mycoplasma pneumoniae 313
Human milk Sialylated poly(N-acetyl lactosaminoglycans)  Streptococcus suis 314
Human milk Sialyl-3'-Lac and sialylated glycoproteins E. coli (S pili) 315
Human milk Sialylgalactosides E. coli (S pili) 316

aAdapted from references 284, 285.
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FimH adhesin in type 1 pili and compete with the natural
mannosylated receptors. However, this mechanism of
action cannot explain the ability of cranberry extract
to inhibit P pili-mediated adhesion in vitro, suggesting
that multiple inhibitors may be present (226).

Milk from humans and other mammals has also been
determined to contain a number of antibodies, glyco-
proteins, and oligosaccharides that inhibit or reduce
bacterial binding (Table 5). A murine model of H. pylori
infection revealed that the oligosaccharides Lewis-b and
sialyl Lewis-x present in porcine milk have the ability to
reduce colonization of the gastrointestinal tract through
the inhibition of bacterial adherence to host receptors
(227). Human milk oligosaccharides have also been
demonstrated to inhibit binding of the enteric pathogens
E. coli, Vibrio cholerae, and Salmonella fyris to epithe-
lial cell lines (228). This observation likely explains the
correlation between protection against diarrhea and the
quantity of oligosaccharides detected in breast milk
(229). Taken together, the inhibition of bacterial adhe-
sion by naturally occurring products in milk and plant
tissue may represent an evolved approach to targeting
bacterial adhesion as a host defense mechanism. Indeed,
many attempts at inhibiting bacterial adhesion have
been informed by investigation into the activity of nat-
urally occurring products. Further screening of these
natural products for inhibitors of bacterial binding will
likely serve as an important source of novel therapeutics
for targeting pathogen adherence.

Additional strategies to prevent adhesion and colo-
nization by human pathogens have included the use
of commensal or probiotic strains to reduce binding of
detrimental microorganisms by saturating host surface
receptors and eliminating pathogen-binding sites. This
form of protection is known as colonization resistance
(230). Interestingly, administration of antibiotics has
been shown to perturb the beneficial commensal bacte-
ria that generate this resistance, resulting in increased
colonization of opportunistic pathogens (231). Probiotic
bacteria can also compete with pathogens for vital nu-
trients required for growth, as well as influence pro-
duction of host mucins that improve barrier function
(232, 233). Ultimately, utilization of probiotics can
function to prevent pathogen colonization through a
diverse array of mechanisms.

SMALL-MOLECULE INHIBITORS

OF ADHESIN EXPRESSION

In addition to interruption of protein complex assem-
bly and inhibition of adhesin-receptor interactions,
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disruption of adhesin transcription is also a viable mech-
anism of preventing and treating bacterial infections.
In many pathogens, regulation of adhesin transcription
is integrated into large regulons that impact a number
of additional virulence factors, including toxins and
secretion systems. Expression of these regulatory net-
works is often controlled by a variety of cellular and
environmental signals, including bacterial density. De-
tection of bacterial populations can occur by a number
of mechanisms but often involves quorum sensing, a
mode of bacterial communication utilized by several
pathogens to regulate expression of growth and viru-
lence factors as a function of population density. Quo-
rum sensing typically involves the secretion of a small
signaling molecule that accumulates in the extracellular
space until a critical threshold is reached, resulting in
the transcriptional upregulation of a number of viru-
lence genes, including adhesins (234). There are a
number of examples in which targeting and disruption
of these regulatory pathways has prevented the expres-
sion of adhesins and other known virulence factors
(235-238).

CONCLUDING REMARKS: THE ADVANTAGES
OF TARGETING PATHOGEN ADHESIN

As the effectiveness of broad-spectrum antibiotics con-
tinues to decline at an alarming rate, the need for the
development of novel antimicrobial agents has never
been more immediate. The current paradigm of antibi-
otic discovery is largely based on continued expansion
of existing classes of antibiotics to circumvent evolved
bacterial resistance mechanisms. While this approach
may provide short-term solutions, the strong selective
pressure conferred by drugs that target vital cell pro-
cesses will ultimately limit the effective lifetime of these
derivatives. To mitigate this selective pressure, investi-
gators are instead pursuing novel mechanisms of anti-
microbial action that target virulence factors central to
the bacterial pathogenic cascade. These factors play a
role in a variety of processes, beginning with the colo-
nization of host niches and continuing with engagement
of secretion systems, formation of biofilms, and others.

A necessary first step in the progression of many bac-
terial infections is adherence to host tissues in the niche
targeted by the pathogen. There are many structurally
distinct but functionally overlapping mechanisms by
which bacteria mediate this adhesion. These mecha-
nisms depend on the bacteria’s location, identity, and
local environment. As we continue to build our under-
standing of these systems at the molecular level, we will
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elucidate several new strategies for the targeting of these
vital bacterial processes.

Further refinement of these antivirulence compounds,
peptides, and vaccines will lead to the development of
therapeutics that target pathogens in the niche in which
they cause disease. By directing these strategies toward a
diverse array of disease processes, investigators hope to
provide clinicians with a formidable arsenal of tools for
use against a wide variety of infections. The ability of
these therapeutics to target pathogens within their spe-
cific host niches eliminates the concomitant disruption of
the host commensal microbiota that commonly accom-
panies treatment with current, broad-spectrum anti-
biotics. This, in turn, eliminates the blooming of other
pathogenic bacteria that can occur in states of host
dysbiosis.

An additional advantage conferred by the utilization
of therapeutics that target bacterial virulence rather
than essential cellular metabolic processes is a possible
reduction in the rate of antimicrobial resistance. It
is conceivable that any mutations made to escape the
therapeutic mechanism will result in a concomitant de-
crease in the ability of the adhesin to interact with its
natural receptor. While this hypothesis has not yet been
vigorously tested, this may represent a unique scenario
wherein development of resistance to antiadhesive ther-
apeutics may occur, but doing so will result in a signif-
icant attenuation of virulence.

Recent advances in the targeting of bacterial adhesion
have come from in silico docking with solved protein
structures. The ability to virtually screen thousands of
compounds reduces costs and decreases the time neces-
sary to identify promising targets. Thus, it is necessary to
continue to pursue a structural understanding of host-
pathogen interactions on a molecular level through
NMR and X-ray crystallography to inform computa-
tional identification and rational design of potent and
effective compounds. Additionally, consideration of the
pharmacokinetic behavior of compounds early in their
development will also be crucial in identifying success-
ful antiadhesive approaches that will be conducive to a
clinical setting.

Finally, while the development of small molecules
and vaccines can provide exciting therapeutic options,
their development is also fundamental to obtaining a
clear and complete understanding of bacterial patho-
genesis. As with genetic manipulation, these compounds
provide investigators with molecular scalpels that can
dissect host-pathogen interactions, allowing one to un-
derstand the contribution of these interactions to dis-
ease in animal models, as well as to identify putative

host targets. Indeed, there are a number of examples in
which chemical biology through the generation of mo-
lecular probes has aided in the study of bacterial path-
ogenesis (239). Ultimately, continued development of
antiadhesive strategies will further our understanding
of bacterial virulence as it relates to human disease and
provide unique approaches to the treatment of infectious
diseases.
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