184 research outputs found

    LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    Get PDF
    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger

    Lady Gaga as (dis)simulacrum of monstrosity

    Get PDF
    Lady Gaga’s celebrity DNA revolves around the notion of monstrosity, an extensively researched concept in postmodern cultural studies. The analysis that is offered in this paper is largely informed by Deleuze and Guattari’s notion of monstrosity, as well as by their approach to the study of sign-systems that was deployed in A Thousand Plateaus. By drawing on biographical and archival visual data, with a focus on the relatively underexplored live show, an elucidation is afforded of what is really monstrous about Lady Gaga. The main argument put forward is that monstrosity as sign seeks to appropriate the horizon of unlimited semiosis as radical alterity and openness to signifying possibilities. In this context it is held that Gaga effectively delimits her unique semioscape; however, any claims to monstrosity are undercut by the inherent limits of a representationalist approach in sufficiently engulfing this concept. Gaga is monstrous for her community insofar as she demands of her fans to project their semiosic horizon onto her as a simulacrum of infinite semiosis. However, this simulacrum may only be evinced in a feigned manner as a (dis)simulacrum. The analysis of imagery from seminal live shows during 2011–2012 shows that Gaga’s presumed monstrosity is more akin to hyperdifferentiation as simultaneous employment of heterogeneous and potentially dissonant inter pares cultural representations. The article concludes with a problematisation of audience effects in the light of Gaga’s adoption of a schematic and post-representationalist strategy in the event of her strategy’s emulation by competitive artists

    Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay

    Full text link
    The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta (0νββ0\nu\beta\beta) decay in 136^{136}Xe with a target half-life sensitivity of approximately 102810^{28} years using 5×1035\times10^3 kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the 136^{136}Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates.Comment: v2 as publishe

    Planck 2013 results. XXII. Constraints on inflation

    Get PDF
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions

    Making maps of cosmic microwave background polarization for B-mode studies: The POLARBEAR example

    Get PDF
    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable. \ua9 ESO, 2017

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    Get PDF
    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass MM and SZ signal YY calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8\sigma_8 and matter density parameter Ωm\Omega_{\mathrm{m}} in a flat Λ\LambdaCDM model. We test the robustness of our estimates and find that possible biases in the YY--MM relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8=0.75±0.03\sigma_8=0.75\pm 0.03, Ωm=0.29±0.02\Omega_{\mathrm{m}}=0.29\pm 0.02, and σ8(Ωm/0.27)0.3=0.764±0.025\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3} = 0.764 \pm 0.025. The value of σ8\sigma_8 is degenerate with the mass bias; if the latter is fixed to a value of 20% we find σ8(Ωm/0.27)0.3=0.78±0.01\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3}=0.78\pm 0.01 and a tighter one-dimensional range σ8=0.77±0.02\sigma_8=0.77\pm 0.02. We find that the larger values of σ8\sigma_8 and Ωm\Omega_{\mathrm{m}} preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the Λ\LambdaCDM model, such as a component of massive neutrinos (abridged).Comment: 20 pages, accepted for publication by A&

    Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources

    Get PDF
    We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M⊙. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys.The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU).Peer Reviewe

    The ALICE Transition Radiation Detector: Construction, operation, and performance

    Get PDF
    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection. (c) 2017 CERN for the benefit of the Authors. Published by Elsevier B.V
    corecore