103 research outputs found

    Low radio frequency signatures of ram pressure stripping in Virgo spiral NGC 4254

    Full text link
    We report the detection of extended low radio frequency continuum emission beyond the optical disk of the spiral galaxy NGC 4254 using the Giant Metrewave Radio Telescope. NGC 4254, which has an almost face-on orientation, is located in the outskirts of the Virgo cluster. Since such extended emission is uncommon in low inclination galaxies, we believe it is a signature of magnetised plasma pushed out of the disk by ram pressure of the intracluster medium as NGC 4254 falls into the Virgo cluster. The detailed spectral index distribution across NGC 4254 shows that the steepest spectrum alpha < -1 (S propto nu^{alpha}) arises in the gas beyond the optical disk. This lends support to the ram pressure scenario by indicating that the extended emission is not from the disk gas but from matter which has been stripped by ram pressure. The steeper spectrum of the extended emission is reminiscent of haloes in edge-on galaxies. The sharp fall in intensity and enhanced polarization in the south of the galaxy, in addition to enhanced star formation reported by others provide evidence towards the efficacy of ram pressure on this galaxy. HI 21cm observations show that the gas in the north lags in rotation and hence is likely the atomic gas which is carried along with the wind. NGC 4254 is a particularly strong radio emitter with a power of 7x10^{22} Watts/Hz at 240 MHz. We find that the integrated spectrum of the galaxy flattens at lower frequencies and is well explained by an injection spectrum with alpha_0=-0.45+-0.12. We end by comparing published simulation results with our data and conclude that ram pressure stripping is likely to be a significant contributor to evolution of galaxies residing in X-ray poor groups and cluster outskirts.Comment: 10 pages, 7 figures (figures 1,2 and 4 are in jpg format) and 2 tables; Accepted for publication in MNRA

    Hint of 150 MHz radio emission from the Neptune-mass extrasolar transiting planet HAT-P-11b

    Full text link
    Since the radio-frequency emission from planets is expected to be strongly influenced by their interaction with the magnetic field and corona of the host star, the physics of this process can be effectively constrained by making sensitive measurements of the planetary radio emission. Up to now, however, numerous searches for radio emission from extrasolar planets at radio wavelengths have only yielded negative results. Here we report deep radio observations of the nearby Neptune-mass extrasolar transiting planet HAT-P-11b at 150 MHz, using the Giant Meterwave Radio Telescope (GMRT). On July 16, 2009, we detected a 3-sigma emission whose light curve is consistent with an eclipse when the planet passed behind the star. This emission is at a position 14 arcsec from the transiting exoplanet's coordinates; thus, with a synthetized beam of FWHM~16 arcsec, the position uncertainty of this weak radio signal encompasses the location of HAT-P-11. We estimate a 5% false positive probability that the observed radio light curve mimics the planet's eclipse light curve. If the faint signature is indeed a radio eclipse event associated with the planet, then its flux would be 3.87 mJy +/- 1.29 mJy at 150 MHz. However, our equally sensitive repeat observations of the system on November 17, 2010 did not detect a significant signal in the radio light curve near the same position. This lack of confirmation leaves us with the possibility of either a variable planetary emission, or a chance occurrence of a false positive signal in our first observation. Deeper observations are required to confirm this hint of 150 MHz radio emission from HAT-P-11b.Comment: Accepted for publication in Astronomy & Astrophysic

    J021659-044920: a relic giant radio galaxy at z ~ 1.3

    Full text link
    We report the discovery of a relic Giant Radio Galaxy (GRG) J021659-044920 at redshift z1.3z \sim 1.3 that exhibits large-scale extended, nearly co-spatial, radio and X-ray emission from radio lobes, but no detection of Active Galactic Nuclei core, jets and hotspots. The total angular extent of the GRG at the observed frame 0.325 GHz, using Giant Metrewave Radio Telescope observations is found to be {\sim} 2.4 arcmin, that corresponds to a total projected linear size of \sim 1.2 Mpc. The integrated radio spectrum between 0.240 and 1.4 GHz shows high spectral curvature (α0.610 GHz1.4 GHzα0.240 GHz0.325 GHz{\alpha}_{\rm 0.610~GHz}^{\rm 1.4~GHz} - {\alpha}_{\rm 0.240~GHz}^{\rm 0.325~GHz} >> 1.19) with sharp steepening above 0.325 GHz, consistent with relic radio emission that is \sim 8 ×\times 106^{6} yr old. The radio spectral index map between observed frame 0.325 and 1.4~GHz for the two lobes varies from 1.4 to 2.5 with the steepening trend from outer-end to inner-end, indicating backflow of plasma in the lobes. The extended X-ray emission characterized by an absorbed power-law with photon index \sim 1.86 favours inverse-Compton scattering of the Cosmic Microwave Background (ICCMB) photons as the plausible origin. Using both X-ray and radio fluxes under the assumption of ICCMB we estimate the magnetic field in the lobes to be 3.3 μ\muG. The magnetic field estimate based on energy equipartition is \sim 3.5 μ\muG. Our work presents a case study of a rare example of a GRG caught in dying phase in the distant Universe.Comment: 10 pages, 5 figures, 3 tables. Published in MNRAS. Corrected typos and added a referenc

    A search for radio emission from exoplanets around evolved stars

    Get PDF
    The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically >150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the Low Frequency Array (LOFAR) at 150 MHz (λ\lambda = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β\beta Gem, ι\iota Dra, and β\beta UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ\sigma upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β\beta Gem, ι\iota Dra, and β\beta UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.Comment: 9 pages, 3 figure

    On the nature of infrared-faint radio sources in the SXDF and VLA-VVDS fields

    Full text link
    Infrared-Faint Radio Sources (IFRSs) are an unusual class of objects that are relatively bright at radio wavelengths but have faint or undetected infrared counterparts even in deep surveys. We identify and investigate the nature of IFRSs using deep radio (S1.4 GHz_{\rm 1.4~GHz} \sim 100 μ\muJy beam1^{-1} at 5σ\sigma), optical (mr_{\rm r} \sim 26 - 27.7 at 5σ\sigma), and near-IR (S3.6 μm_{\rm 3.6~{\mu}m} \sim 1.3 - 2.0 μ\muJy beam1^{-1} at 5σ\sigma) data available in two deep fields namely the Subaru X-ray Deep Field (SXDF) and the Very Large Array - VIMOS VLT Deep Survey (VLA-VVDS) field. In 1.8 deg2^{2} of the two fields we identify a total of nine confirmed and ten candidate IFRSs. We find that our IFRSs are high-redshift radio-loud AGN, with 12/19 sources having redshift estimates in the range of zz \sim 1.7 - 4.3, while a limit of zz \geq 2.0 is placed for the remaining seven sources. Notably, our study finds, for the first time, IFRSs with measured redshift >> 3.0, and also, the redshift estimates for IFRSs in the faintest 3.6 μ\mum flux regime i.e., S3.6 μm_{\rm 3.6~{\mu}m} << 1.3 μ{\mu}Jy. Radio observations show that our IFRSs exhibit both compact unresolved as well as extended double-lobe morphologies, and have predominantly steep radio spectra between 1.4 GHz and 325 MHz. The non-detection of all but one IFRSs in the X-ray band and the optical-to-MIR colour (mr_{\rm r} - m24 μm_{\rm 24~{\mu}m}) suggest that a significant fraction of IFRSs are likely to be hosted in dusty obscured galaxies.Comment: 20 pages, 8 figures, 4 tables, accepted for publication in MNRA

    Deep GMRT 150 MHz observations of the DEEP2 fields: Searching for High Red-shift Radio Galaxies Revisited

    Full text link
    High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio galaxies to ~ 10 to 100 times fainter than the known population till date. We have extracted ultra-steep spectrum (USS) samples from deep 150 MHz Giant Meter-wave Radio Telescope (GMRT) observations from one of the three well-studied DEEP2 fields to this affect. From correlating these radio sources w.r.t to the high-frequency catalogues such as VLA, FIRST, and NVSS at 1.4 GHz, we find ~ 100 steep spectrum (spectral index, α\alpha >> 1) radio sources, which are good candidates for high red-shift radio galaxies.Comment: 3 pages, 1 figures, Revised version under review in the Journal of Astrophysics and Astronom
    corecore