195 research outputs found

    Mushy Zone Morphology During Directional Solidification of Pb-5.8 Wt Pct Sb Alloy

    Get PDF
    The Pb-5.8 wt pet Sb alloy was directionally solidified with a positive thermal gradient of 140 K cm(-1) at a growth speed ranging from 0.8 to 30 mu m s(-1), and then it was quenched to retain the mushy zone morphology. The morphology of the mushy zone along its entire length has been characterized by using a serial sectioning and three-dimensional image reconstruction technique. Variation in the cellular/dendritic shape factor, hydraulic radius of the interdendritic region, and fraction solid along the mushy zone length has been studied. A comparison with predictions from theoretical models indicates that convection remarkably reduces the primary dendrite spacing while its influence on the dendrite tip radius is not as significant

    Mammary tuberculosis mimicking breast cancer: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The incidence of tuberculosis is rising worldwide and rare manifestations of the past are seen more often nowadays. Mammary tuberculosis is a rare clinical entity, often mimicking breast cancer or abscesses of benign or malignant origin. Clinical awareness is necessary during diagnostic work-up for establishing the correct diagnosis and treatment.</p> <p>Case presentation</p> <p>We present a case of breast tuberculosis diagnosed in a 73 year old woman at our institution. The patient presented with a palpable mass of the right breast with clinical, laboratory and mammographic findings indicative of breast carcinoma. The patient underwent lumpectomy and sentinel lymph node biopsy. Frozen section of the tumor and the sentinel node revealed "granulomatous inflammation", while gross examination confirmed the diagnosis of tuberculous mastitis. The patient received anti-tuberculosis therapy for six months with no side effects or any further complications.</p> <p>Conclusion</p> <p>Breast tuberculosis is an obscure disease often mistaken for carcinoma or pyogenic abscess of the breast, especially if well-defined clinical features are absent. A high index of suspicion is required because the disease can usually be treated conservatively with current antituberculous modalities while surgical intervention is reserved for rare cases only.</p

    Early prediction of response to radiotherapy and androgen-deprivation therapy in prostate cancer by repeated functional MRI: a preclinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In modern cancer medicine, morphological magnetic resonance imaging (MRI) is routinely used in diagnostics, treatment planning and assessment of therapeutic efficacy. During the past decade, functional imaging techniques like diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI have increasingly been included into imaging protocols, allowing extraction of intratumoral information of underlying vascular, molecular and physiological mechanisms, not available in morphological images. Separately, pre-treatment and early changes in functional parameters obtained from DWMRI and DCEMRI have shown potential in predicting therapy response. We hypothesized that the combination of several functional parameters increased the predictive power.</p> <p>Methods</p> <p>We challenged this hypothesis by using an artificial neural network (ANN) approach, exploiting nonlinear relationships between individual variables, which is particularly suitable in treatment response prediction involving complex cancer data. A clinical scenario was elicited by using 32 mice with human prostate carcinoma xenografts receiving combinations of androgen-deprivation therapy and/or radiotherapy. Pre-radiation and on days 1 and 9 following radiation three repeated DWMRI and DCEMRI acquisitions enabled derivation of the apparent diffusion coefficient (ADC) and the vascular biomarker <it>K</it><sup>trans</sup>, which together with tumor volumes and the established biomarker prostate-specific antigen (PSA), were used as inputs to a back propagation neural network, independently and combined, in order to explore their feasibility of predicting individual treatment response measured as 30 days post-RT tumor volumes.</p> <p>Results</p> <p>ADC, volumes and PSA as inputs to the model revealed a correlation coefficient of 0.54 (p < 0.001) between predicted and measured treatment response, while <it>K</it><sup>trans</sup>, volumes and PSA gave a correlation coefficient of 0.66 (p < 0.001). The combination of all parameters (ADC, <it>K</it><sup>trans</sup>, volumes, PSA) successfully predicted treatment response with a correlation coefficient of 0.85 (p < 0.001).</p> <p>Conclusions</p> <p>We have in a preclinical investigation showed that the combination of early changes in several functional MRI parameters provides additional information about therapy response. If such an approach could be clinically validated, it may become a tool to help identifying non-responding patients early in treatment, allowing these patients to be considered for alternative treatment strategies, and, thus, providing a contribution to the development of individualized cancer therapy.</p

    Focus on topological quantum computation

    Get PDF
    Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterization of topological phases of matter and their experimental realization. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This 'focus on' collection brings together several of the latest developments in the field and facilitates the synergy between different approaches

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo

    Get PDF
    Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation
    corecore