829 research outputs found

    Modeling electrolytically top gated graphene

    Get PDF
    We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomena is modeled using a modified Poisson-Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene's doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters for a special issue related to the NGC 2009 conference (http://asdn.net/ngc2009/index.shtml

    Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes

    Full text link
    We construct and analyze a large class of exact five- and six-dimensional regular and static solutions of the vacuum Einstein equations. These solutions describe sequences of Kaluza-Klein bubbles and black holes, placed alternately so that the black holes are held apart by the bubbles. Asymptotically the solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In particular, they occupy a hitherto unexplored region of the phase diagram, since their relative tension exceeds that of the uniform black string. The solutions contain bubbles and black holes of various topologies, including six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against gravitational collapse. We find two maps between solutions, one that relates five- and six-dimensional solutions, and another that relates solutions in the same dimension by interchanging bubbles and black holes. To illustrate the richness of the phase structure and the non-uniqueness in the (\mu,n) phase diagram, we consider in detail particular examples of the general class of solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.

    Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach

    Get PDF
    Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronalspecific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE

    Rotating Circular Strings, and Infinite Non-Uniqueness of Black Rings

    Full text link
    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings.Comment: 31 pages, 7 figures. v2: minor changes, added reference. v3: erroneous values of T_{ww} (eq.(3.39)) and n_p (eq.(5.20)) corrected, and accompanying discussion amended. In the journal version these corrections appear as an appended erratum. No major changes involve

    NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium

    Full text link
    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient (PFG) NMR coupled with one-dimensional magnetic resonance imaging (MRI). The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom which was highly skewed and non-Gaussian. Data taken for three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit to a hydrodynamic theory, which successfully models the density and temperature profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore