971 research outputs found
Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate
10.1186/1471-2148-7-38BMC Evolutionary Biology7
Modeling electrolytically top gated graphene
We investigate doping of a single-layer graphene in the presence of
electrolytic top gating. The interfacial phenomena is modeled using a modified
Poisson-Boltzmann equation for an aqueous solution of simple salt. We
demonstrate both the sensitivity of graphene's doping levels to the salt
concentration and the importance of quantum capacitance that arises due to the
smallness of the Debye screening length in the electrolyte.Comment: 7 pages, including 4 figures, submitted to Nanoscale Research Letters
for a special issue related to the NGC 2009 conference
(http://asdn.net/ngc2009/index.shtml
Genetic Variation in KCNQ1 Associates With Fasting Glucose andβ-Cell Function: A Study of 3,734 Subjects Comprising Three Ethnicities Living in Singapore
10.2337/db08-1138Diabetes5861445-1449DIAE
Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes
We construct and analyze a large class of exact five- and six-dimensional
regular and static solutions of the vacuum Einstein equations. These solutions
describe sequences of Kaluza-Klein bubbles and black holes, placed alternately
so that the black holes are held apart by the bubbles. Asymptotically the
solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they
are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In
particular, they occupy a hitherto unexplored region of the phase diagram,
since their relative tension exceeds that of the uniform black string. The
solutions contain bubbles and black holes of various topologies, including
six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology
S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against
gravitational collapse. We find two maps between solutions, one that relates
five- and six-dimensional solutions, and another that relates solutions in the
same dimension by interchanging bubbles and black holes. To illustrate the
richness of the phase structure and the non-uniqueness in the (\mu,n) phase
diagram, we consider in detail particular examples of the general class of
solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.
Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach
Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronalspecific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE
Rotating Circular Strings, and Infinite Non-Uniqueness of Black Rings
We present new self-gravitating solutions in five dimensions that describe
circular strings, i.e., rings, electrically coupled to a two-form potential (as
e.g., fundamental strings do), or to a dual magnetic one-form. The rings are
prevented from collapsing by rotation, and they create a field analogous to a
dipole, with no net charge measured at infinity. They can have a regular
horizon, and we show that this implies the existence of an infinite number of
black rings, labeled by a continuous parameter, with the same mass and angular
momentum as neutral black rings and black holes. We also discuss the solution
for a rotating loop of fundamental string. We show how more general rings arise
from intersections of branes with a regular horizon (even at extremality),
closely related to the configurations that yield the four-dimensional black
hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large
extremal ring through a microscopic calculation. Finally, we discuss some
qualitative ideas for a microscopic understanding of neutral and dipole black
rings.Comment: 31 pages, 7 figures. v2: minor changes, added reference. v3:
erroneous values of T_{ww} (eq.(3.39)) and n_p (eq.(5.20)) corrected, and
accompanying discussion amended. In the journal version these corrections
appear as an appended erratum. No major changes involve
Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine:A potential role for homoserine kinase in insect-stage Trypanosoma brucei
10.1111/mmi.12853Molecular Microbiology951143-15
Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery
peer reviewedPolymers bearing pendant carbohydrates have a variety of biomedical applications especially in the area of targeted drug delivery. Here we report the synthesis of a family of amphiphilic block glycopolymers containing d glucose, d galactose and d mannose via metal-free organocatalyzed ring-opening polymerization of functional cyclic carbonates generating narrowly dispersed products of controlled molecular weight and end-group fidelity, and their application in drug delivery. These glycopolymers self-assemble into micelles having a high density of sugar molecules in the shell, a size less than 100 nm with narrow size distribution even after drug loading, and little cytotoxicity, which are important for drug delivery. Using galactose-containing micelles as an example, we demonstrate their strong targeting ability towards ASGP-R positive HepG2 liver cancer cells in comparison with ASGP-R negative HEK293 cells although the galactose is attached to the carbonate monomer at 6-position. The enhanced uptake of DOX-loaded galactose-containing micelles by HepG2 cells significantly increases cytotoxicity of DOX as compared to HEK293. This new family of amphiphilic block glycopolymers has great potential as carriers for targeted drug delivery
NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium
A three-dimensional granular system fluidized by vertical container
vibrations was studied using pulsed field gradient (PFG) NMR coupled with
one-dimensional magnetic resonance imaging (MRI). The system consisted of
mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4
was sufficiently low to achieve a nearly time-independent granular fluid. Using
NMR, the vertical profiles of density and granular temperature were directly
measured, along with the distributions of vertical and horizontal grain
velocities. The velocity distributions showed modest deviations from
Maxwell-Boltzmann statistics, except for the vertical velocity distribution
near the sample bottom which was highly skewed and non-Gaussian. Data taken for
three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit
to a hydrodynamic theory, which successfully models the density and temperature
profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
- …