661 research outputs found
One-dimensional Analysis of Impulse Turbine with Self-pitch-controlled Guide Vanes for Wave Power Conversion
A classical one-dimensional analysis in turbomachinery was presented to estimate
aerodynamic characteristics of an impulse turbine with self-pitch-controlled guide vanes
which is proposed by the authors for ocean wave power conversion. With some simplified
assumptions, the efficiency vs/flow-rate coefficient curves were calculated and compared
with the experimental results both in a unidirectional steady flow condition and a sinusoidally
oscillating flow condition. The estimated results reveal a behavior of the actual characteristics curve of the turbine. Possibility of further improvement in efficiency was discussed from a viewpoint of specific speed and specific diameter
Experimental Research on Performances of Air Turbines for a Fixed Oscillating Water Column-Type Wave Energy Converter
A fixed oscillating water column (OWC)-type wave energy converter is composed of an air chamber for primary conversion and an air turbine for secondary conversion. In the optimal design method of a fixed OWC-type wave energy converter, it is necessary to develop a design method which can consider the characteristics of incident wave motion, the motion of the internal free surface affected in the structure such as a partly submerged wall, the fluctuation of air pressure in an air chamber, the rotation of the air turbine. In this paper, the 2-dimensional wave tank tests in regular waves for the performance evaluation of the air turbines in a fixed OWC-type wave energy converter were conducted to obtain the data needed to make this design method. As the results, the effects of the impulse turbine specification such as the rotor inlet/outlet angle, the guide vane's number and the vane's setting angle on the primary and secondary conversion efficiencies are clarified experimentally. Furthermore, the performances of the Wells turbines with different number of blade are presented for comparison of the operating condition
Effect of Homogeneous Condensation on the Interaction of Supersonic Moist Air Jets with Resonance Tube
The Hartmann tube, can use for flow-control, is a device which generates high intensity sound through the shock wave oscillations, are created by the interaction of the supersonic jet. In this study, two-phase flow simulations are carried out to characterize the effect of non-equilibrium condensation on the unsteady flowfield of the Hartmann resonance tube. This present numerical work provides a new insight on the flow dynamics and acoustics of the resonance tube – including the shock nature, the tube gas heating, and the effect of non-equilibrium condensation on the flow structure. A TVD numerical method is applied to the Reynolds and Favre-averaged Navier-Stokes equations, and droplet growth equation of liquid phase production. The simulations are performed over a range of nozzle pressure ratios. The numerically simulated flow structure of under-expanded supersonic jets is compared with experimental data. Moreover, the predicted frequency of end wall pressure fluctuations is compared with the experimental results
Fast ignitor research at the Institute of Laser Engineering, Osaka University
Copyright 2001 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 8(5), 2268-2274, 2001 and may be found at http://dx.doi.org/10.1063/1.135259
Studies of ultra-intense laser plasma interactions for fast ignition
Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 7(5), 2014-2022, 2000 and may be found at http://dx.doi.org/10.1063/1.87402
Subgroup analyses to determine cardiovascular risk associated with nonsteroidal antiinflammatory drugs and coxibs in specific patient groups
Objective. To explore the extent to which clinical characteristics influence the association between cyclooxygenase 2 inhibitors (coxibs) and/or nonselective nonsteroidal antiinflammatory drugs (NSAIDs) and increased cardiovascular disease (CVD) risk in specific patient subgroups. There is substantial concern regarding the potential cardiovascular adverse effects of selective coxibs and nonselective NSAIDs, but many patients with arthritis experience important clinical benefits from these agents. Methods. The study population consisted of Medicare beneficiaries also eligible for a drug benefits program for older adults during the years 1999-2004. We calculated the relative risk (RR) for CVD events (myocardial infarction [MI], stroke, congestive heart failure, and cardiovascular death) among users of coxibs or nonselective NSAIDs in the prior 6 months compared with nonusers. We assessed biologic interaction between these medication exposures and important patient characteristics. Results. In the primary cohort, we identified 76,082 new users of coxibs, 53,014 new users of nonselective NSAIDs, and 46,558 nonusers. Compared with nonusers, the adjusted RR of CVD events for new users of each agent increased for rofecoxib (RR 1.22, 95% confidence interval [95% CI] 1.14, 1.30) and decreased for naproxen (RR 0.79, 95% CI 0.67, 0.93). Several patient characteristics were found to increase the risk of CVD events among users of some agents in both the primary and secondary cohorts, including age ≥80 years, hypertension, prior MI, prior CVD, rheumatoid arthritis, chronic renal disease, and chronic obstructive pulmonary disease. Rofecoxib and ibuprofen appeared to confer an increased risk in multiple patient subgroups. Conclusion. Many nonselective NSAIDs and coxibs are not associated with an increased risk of CVD events. However, several patient characteristics identify important subgroups that may be at an increased risk when using specific agents
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice
Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis
- …