177 research outputs found

    Emergency open cholecystectomy is associated with markedly lower incidence of postoperative nausea and vomiting (PONV) than elective open cholecystectomy: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During a previous study to define and compare incidence risks of postoperative nausea and vomiting (PONV) for elective laparoscopic and open cholecystectomy at two hospitals in Jamaica, secondary analysis comparing PONV risk in elective open cholecystectomy to that after emergency open cholecystectomy suggested that it was markedly reduced in the latter group. The decision was made to collect data on an adequate sample of emergency open cholecystectomy cases and further explore this unexpected finding in a separate study.</p> <p>Methods</p> <p>Data were collected for 91 emergency open cholecystomy cases identified at the two paricipating hospitals from May 2007 retrograde, as was done for the 175 elective open cholecystectomy cases (from the aforementioned study) with which the emergency cases were to be compared. Variables selected for extraction and statistical analysis included all those known, suspected and plausibly associated with the risk of PONV and with urgency of surgery.</p> <p>Results</p> <p>Emergency open cholecystectomy was associated with a markedly reduced incidence risk of PONV compared to elective open cholecystectomy (6.6% versus 28.6%, P < 0.001). The suppressive effect of emergency increased after adjustment for confounders in a multivariable logistic regression model (odds ratio 0.103, P < 0.001). This finding also identifies, by extrapolation, an association between reduced risk of PONV and preoperative nausea and vomiting, which occurred in 80.2% of emergency cases in the 72 hour period preceding surgery.</p> <p>Conclusions</p> <p>The incidence risk of postoperative nausea and vomiting is markedly decreased after emergency open cholecystectomy compared to elective open cholecystectomy. The study, by extrapolation, also identifies a paradoxical association between pre-operative nausea and vomiting, observed in 80.2% of emergency cases, and suppression of PONV. This association, if confirmed in prospective cohort studies, may have implications for PONV prophylaxis if it can be exploited at a sub-clinical level.</p

    Differential Regulation of the PGC Family of Genes in a Mouse Model of Staphylococcus aureus Sepsis

    Get PDF
    The PGC family of transcriptional co-activators (PGC-1Ξ± [Ppargc1a], PGC-1Ξ² [Ppargc1b], and PRC [Pprc]) coordinates the upregulation of mitochondrial biogenesis, and Ppargc1a is known to be activated in response to mitochondrial damage in sepsis. Therefore, we postulated that the PGC family is regulated by the innate immune system. We investigated whether mitochondrial biogenesis and PGC gene expression are disrupted in an established model of Staphylococcus aureus sepsis both in mice with impaired innate immune function (TLR2βˆ’/βˆ’ and TLR4βˆ’/βˆ’) and in wild-type controls. We found an early up-regulation of Ppargc1a and Ppargc1b post-infection (at 6 h) in WT mice, but the expression of both genes was concordantly dysregulated in TLR2βˆ’/βˆ’ mice (no increase at 6 h) and in TLR4βˆ’/βˆ’ mice (amplified at 6 h). However, the third family member, PRC, was regulated differently, and its expression increased significantly at 24 h in all three mouse strains (WT, TLR2βˆ’/βˆ’, and TLR4βˆ’/βˆ’). In silico analyses showed that Ppargc1a and Ppargc1b share binding sites for microRNA mmu-mir-202-3p. Thus, miRNA-mediated post-transcriptional mRNA degradation could account for the failure to increase the expression of both genes in TLR2βˆ’/βˆ’ mice. The expression of mmu-mir-202-3p was measured by real-time PCR and found to be significantly increased in TLR2βˆ’/βˆ’ but not in WT or TLR4βˆ’/βˆ’ mice. In addition, it was found that mir-202-3p functionally decreases Ppargc1a mRNA in vitro. Thus, both innate immune signaling through the TLRs and mir-202-3p-mediated mRNA degradation are implicated in the co-regulation of Ppargc1a and Ppargc1b during inflammation. Moreover, the identification of mir-202-3p as a potential factor for Ppargc1a and Ppargc1b repression in acute inflammation may open new avenues for mitochondrial research and, potentially, therapy

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Thermal modelling of gas generation and retention in the Jurassic organic-rich intervals in the Darquain field, Abadan Plain, SW Iran

    Get PDF
    The petroleum system with Jurassic source rocks is an important part of the hydrocarbons discovered in the Middle East. Limited studies have been done on the Jurassic intervals in the 26,500Β km2 Abadan Plain in south-west Iran, mainly due to the deep burial and a limited number of wells that reach the basal Jurassic successions. The goal of this study was to evaluate the Jurassic organic-rich intervals and shale gas play in the Darquain field using organic geochemistry, organic petrography, biomarker analysis, and basin modelling methods. This study showed that organic-rich zones present in the Jurassic intervals of Darquain field could be sources of conventional and unconventional gas reserves. The organic matter content of samples from the organic-rich zones corresponds to medium-to-high-sulphur kerogen Type II-S marine origin. The biomarker characteristics of organic-rich zones indicate carbonate source rocks that contain marine organic matter. The biomarker results also suggest a marine environment with reducing conditions for the source rocks. The constructed thermal model for four pseudo-wells indicates that, in the kitchen area of the Jurassic gas reserve, methane has been generated in the Sargelu and Neyriz source rocks from Early Cretaceous to recent times and the transformation ratio of organic matter is more than 97%. These organic-rich zones with high initial total organic carbon (TOC) are in the gas maturity stage [1.5–2.2% vitrinite reflectance in oil (Ro)] and could be good unconventional gas reserves and gas source rocks. The model also indicates that there is a huge quantity of retained gas within the Jurassic organic-rich intervals

    Expression of the blood-group-related glycosyltransferase B4galnt2 influences the intestinal microbiota in mice

    Get PDF
    Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase Ξ²-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis

    The CYCLIN-A CYCA1;2/TAM Is Required for the Meiosis I to Meiosis II Transition and Cooperates with OSD1 for the Prophase to First Meiotic Division Transition

    Get PDF
    Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants failed to enter meiosis II and thus produced diploid spores and functional diploid gametes. These diploid gametes had a recombined genotype produced through the single meiosis I division. In addition, by combining the tam-2 mutation with AtSpo11-1 and Atrec8, we obtained plants producing diploid gametes through a mitotic-like division that were genetically identical to their parents. Thus tam alleles displayed phenotypes very similar to that of the previously described osd1 mutant. Combining tam and osd1 mutations leads to a failure in the prophase to meiosis I transition during male meiosis and to the production of tetraploid spores and gametes. This suggests that TAM and OSD1 are involved in the control of both meiotic transitions

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    Get PDF
    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology
    • …
    corecore