96 research outputs found

    Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Get PDF
    BACKGROUND: Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522) were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. RESULTS: In this study we investigated generation of granulysin in lymphokine activated killer (LAK) cells and antigen (Listeria) specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation.Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. CONCLUSION: This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing

    Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Get PDF
    BACKGROUND: Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522) were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. RESULTS: In this study we investigated generation of granulysin in lymphokine activated killer (LAK) cells and antigen (Listeria) specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation.Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. CONCLUSION: This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing

    Perforin enhances the granulysin-induced lysis of Listeria innocua in human dendritic cells

    Get PDF
    Background: Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells play an essential role in the host defence against intracellular pathogens such as Listeria, and Mycobacteria. The key mediator of bacteria-directed cytotoxicity is granulysin, a 9 kDa protein stored in cytolytic granules together with perforin and granzymes. Granulysin binds to cell membranes and is subsequently taken up via a lipid raft-associated mechanism. In dendritic cells (DC) granulysin is further transferred via early endosomes to L. innocua-containing phagosomes were bacteriolysis is induced. In the present study we analysed the role of perforin in granulysin-induced intracellular bacteriolysis in DC. Results: We found granulysin-induced lysis of intracellular Listeria significantly increased when perforin was simultaneously present. In pulse-chase experiments enhanced bacteriolysis was observed when perforin was added up to 25 minutes after loading the cells with granulysin demonstrating no ultimate need for simultaneous uptake of granulysin and perforin. The perforin concentration sufficient to enhance granulysin-induced intracellular bacteriolysis did not cause permanent membrane pores in Listeria-challenged DC as shown by dye exclusion test and LDH release. This was in contrast to non challenged DC that were more susceptible to perforin lysis. For Listeria-challenged DC, there was clear evidence for an Ca2+ influx in response to sublytic perforin demonstrating a short-lived change in the plasma membrane permeability. Perforin treatment did not affect granulysin binding, initial uptake or intracellular trafficking to early endosomes. However, enhanced colocalization of granulysin with listerial DNA in presence of perforin was found by confocal laser scanning microscopy. Conclusion: The results provide evidence that perforin increases granulysin-mediated killing of intracellular Listeria by enhanced phagosome-endosome fusion triggered by a transient Ca2+ flux

    Structures of ferroportin in complex with its specific inhibitor vamifeport

    Full text link
    A central regulatory mechanism of iron homeostasis in humans involves ferroportin (FPN), the sole cellular iron exporter, and the peptide hormone hepcidin, which inhibits Fe2+^{2+} transport and induces internalization and degradation of FPN. Dysregulation of the FPN/hepcidin axis leads to diverse pathological conditions, and consequently, pharmacological compounds that inhibit FPN-mediated iron transport are of high clinical interest. Here, we describe the cryo-electron microscopy structures of human FPN in complex with synthetic nanobodies and vamifeport (VIT-2763), the first clinical-stage oral FPN inhibitor. Vamifeport competes with hepcidin for FPN binding and is currently in clinical development for β-thalassemia and sickle cell disease. The structures display two distinct conformations of FPN, representing outward-facing and occluded states of the transporter. The vamifeport site is located in the center of the protein, where the overlap with hepcidin interactions underlies the competitive relationship between the two molecules. The introduction of point mutations in the binding pocket of vamifeport reduces its affinity to FPN, emphasizing the relevance of the structural data. Together, our study reveals conformational rearrangements of FPN that are of potential relevance for transport, and it provides initial insight into the pharmacological targeting of this unique iron efflux transporter

    Human CD56(dim)CD16(dim) Cells As an Individualized Natural Killer Cell Subset

    Get PDF
    ABSTARCT: Human natural killer (NK) cells can be subdivided in several subpopulations on the basis of the relative expression of the adhesion molecule CD56 and the activating receptor CD16. Whereas blood CD56brightCD16dim/- NK cells are classically viewed as immature precursors and cytokine producers, the larger CD56dimCD16bright subset is considered as the most cytotoxic one. In peripheral blood of healthy donors, we noticed the existence of a population of CD56dimCD16dim NK cells that was frequently higher in number than the CD56bright subsets and even expanded in occasional control donors but also in transporter associated with antigen processing-deficient patients, two familial hemophagocytic lymphohistiocytosis type II patients, and several common variable immunodeficiency patients. This population was detected but globally reduced in a longitudinal cohort of 18 HIV-1-infected individuals. Phenotypically, the new subset contained a high percentage of relatively immature cells, as reflected by a significantly stronger representation of NKG2A+ and CD57- cells compared to their CD56dimCD16bright counterparts. The phenotype of the CD56dimCD16dim population was differentially affected by HIV-1 infection as compared to the other NK cell subsets and only partly restored to normal by antiretroviral therapy. From the functional point of view, sorted CD56dimCD16dim cells degranulated more than CD56dimCD16bright cells but less than CD56dimCD16- NK cells. The population was also identified in various organs of immunodeficient mice with a human immune system ("humanized" mice) reconstituted from human cord blood stem cells. In conclusion, the CD56dimCD16dim NK cell subpopulation displays distinct phenotypic and functional features. It remains to be clarified if these cells are the immediate precursors of the CD56dimCD16bright subset or placed somewhere else in the NK cell differentiation and maturation pathway

    Twenty-Seven Years of Phase III Trials for Patients with Extensive Disease Small-Cell Lung Cancer: Disappointing Results

    Get PDF
    BACKGROUND: Few studies have formally assessed whether treatment outcomes have improved substantially over the years for patients with extensive disease small-cell lung cancer (ED-SCLC) enrolled in phase III trials. The objective of the current investigation was to determine the time trends in outcomes for the patients in those trials. METHODS AND FINDINGS: We searched for trials that were reported between January 1981 and August 2008. Phase III randomized controlled trials were eligible if they compared first-line, systemic chemotherapy for ED-SCLC. Data were evaluated by using a linear regression analysis. RESULTS: In total, 52 trials were identified that had been initiated between 1980 and 2006; these studies involved 10,262 patients with 110 chemotherapy arms. The number of randomized patients and the proportion of patients with good performance status (PS) increased over time. Cisplatin-based regimens, especially cisplatin and etoposide (PE) regimen, have increasingly been studied, whereas cyclophosphamide, doxorubicin, and vincristine-based regimens have been less investigated. Multiple regression analysis showed no significant improvement in survival over the years. Additionally, the use of a PE regimen did not affect survival, whereas the proportion of patients with good PS and the trial design of assigning prophylactic cranial irradiation were significantly associated with favorable outcome. CONCLUSIONS AND SIGNIFICANCE: The survival of patients with ED-SCLC enrolled in phase III trials did not improve significantly over the years, suggesting the need for further development of novel targets, newer agents, and comprehensive patient care

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
    corecore