749 research outputs found

    Behavioral Deficits and Axonal Injury Persistence after Rotational Head Injury Are Direction Dependent

    Get PDF
    Pigs continue to grow in importance as a tool in neuroscience. However, behavioral tests that have been validated in the rodent model do not translate well to pigs because of their very different responses to behavioral stimuli. We refined metrics for assessing porcine open field behavior to detect a wide spectrum of clinically relevant behaviors in the piglet post-traumatic brain injury (TBI). Female neonatal piglets underwent a rapid non-impact head rotation in the sagittal plane (n=8 evaluable) or were instrumented shams (n=7 evaluable). Open field testing was conducted 1 day prior to injury (day −1) in order to establish an individual baseline for analysis, and at days +1 and +4 after injury. Animals were then killed on day +6 after injury for neuropathological assessment of axonal injury. Injured piglets were less interested in interacting with environmental stimuli and had a lower activity level than did shams. These data were compared with previously published data for axial rotational injuries in neonatal piglets. Acute behavioral outcomes post-TBI showed a dependence on the rotational plane of the brain injury, with animals with sagittal injuries demonstrating a greater level of inactivity and less random usage of the open field space than those with axial injuries. The persistence of axonal injury is also dependent on the rotational plane, with sagittal rotations causing more prolonged injuries than axial rotations. These results are consistent with animal studies, finite element models, and studies of concussions in football, which have all demonstrated differences in injury severity depending upon the direction of head impact rotation

    Smartphone Apps for Measuring Human Health and Climate Change Co-Benefits: A Comparison and Quality Rating of Available Apps.

    Get PDF
    BACKGROUND: Climate change and the burden of noncommunicable diseases are major global challenges. Opportunities exist to investigate health and climate change co-benefits through a shift from motorized to active transport (walking and cycling) and a shift in dietary patterns away from a globalized diet to reduced consumption of meat and energy dense foods. Given the ubiquitous use and proliferation of smartphone apps, an opportunity exists to use this technology to capture individual travel and dietary behavior and the associated impact on the environment and health. OBJECTIVE: The objective of the study is to identify, describe the features, and rate the quality of existing smartphone apps which capture personal travel and dietary behavior and simultaneously estimate the carbon cost and potential health consequences of these actions. METHODS: The Google Play and Apple App Stores were searched between October 19 and November 6, 2015, and a secondary Google search using the apps filter was conducted between August 8 and September 18, 2016. Eligible apps were required to estimate the carbon cost of personal behaviors with the potential to include features to maximize health outcomes. The quality of included apps was assessed by 2 researchers using the Mobile Application Rating Scale (MARS). RESULTS: Out of 7213 results, 40 apps were identified and rated. Multiple travel-related apps were identified, however no apps solely focused on the carbon impact or health consequences of dietary behavior. None of the rated apps provided sufficient information on the health consequences of travel and dietary behavior. Some apps included features to maximize participant engagement and encourage behavior change towards reduced greenhouse gas emissions. Most apps were rated as acceptable quality as determined by the MARS; 1 was of poor quality and 10 apps were of good quality. Interrater reliability of the 2 evaluators was excellent (ICC=0.94, 95% CI 0.87-0.97). CONCLUSIONS: Existing apps capturing travel and dietary behavior and the associated health and environmental impact are of mixed quality. Most apps do not include all desirable features or provide sufficient health information. Further research is needed to determine the potential of smartphone apps to evoke behavior change resulting in climate change and health co-benefits

    Running into New Territory in SUSY Parameter Space

    Full text link
    The LEP-II bound on the light Higgs mass rules out the vast majority of parameter space left to the Minimal Supersymmetric Standard Model (MSSM) with weak-scale soft-masses. This suggests the importance of exploring extensions of the MSSM with non-minimal Higgs physics. In this article, we explore a theory with an additional singlet superfield and an extended gauge sector. The theory has a number of novel features compared to both the MSSM and Next-to-MSSM, including easily realizing a light CP-even Higgs mass consistent with LEP-II limits, tan(beta) < 1, and a lightest Higgs which is charged. These features are achieved while remaining consistent with perturbative unification and without large stop-masses. Discovery modes at the Tevatron and LHC are discussed.Comment: 15 pages, 5 figures; Typo in equation (4.5) corrected; submitted to JHE

    Hypothermia Due to an Ascending Impairment of Shivering in Hyperacute Experimental Allergic Encephalomyelitis in the Lewis Rat

    Get PDF
    Severe hypothermia and an ascending impairment of shivering are previously undescribed clinical signs in hyperacute experimental allergic encephalomyelitis (EAE) in the Lewis rat. These occurred in hyperacute EAE induced by inoculation with guinea pig spinal cord homogenate and heat-killed Bordetella pertussis. Hypothermia was first detected on day 6-7 post-inoculation, within 12-24 h of the onset of neurological signs, and became more severe as the disease progressed. Rectal temperatures less than or equal to 30 degrees C were common at ambient temperatures of 19-22 degrees C. Shivering was assessed by palpation and by cold tremor electromyography. Shivering was absent in the tail by day 6-7 post-inoculation. The impairment then progressed to affect the hindlimbs, thorax and occasionally the forelimbs. Shivering was absent in hindlimbs with only mild or moderate weakness. Histological studies revealed perivascular inflammation with polymorphonuclear and mononuclear cells, oedema, fibrin deposition, haemorrhage, primary demyelination and axonal degeneration in the spinal cord, dorsal root ganglia and spinal roots. The brainstem was also involved but the cerebral hemispheres, including the hypothalamus, were spared. The close relationship between the severity of hypothermia and the extent of shivering impairment indicates that reduced shivering is an important cause of hypothermia in hyperacute EAE. It is concluded that this impairment of shivering is due not to hypothalamic damage but to lesions elsewhere in the central and peripheral nervous systems

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Exploring experiential differences in everyday activities – A focused ethnographic study in the homes of people living with memory-led Alzheimer's disease and posterior cortical atrophy

    Get PDF
    Background Supporting ageing in place, quality of life and activity engagement are public health priorities for people living with dementia, but little is known about the needs and experiences of community-dwelling people with rarer forms of dementia with lesser known symptoms. Posterior cortical atrophy (PCA) is a rare form of dementia usually caused by Alzheimer's disease but which is characterised by diminished visual processing (rather than a dominant memory problem), which poses challenges for maintaining independence and accessing appropriate support. Methods This study used a comparative qualitative design and focussed ethnographic methods to explore experiential differences in activity engagement for 10 people with the most common, memory-led presentation of Alzheimer's disease and 10 people with posterior cortical atrophy within their everyday home environments. Results While the data collection revealed much rich variation in individual and contextual factors, some tentative high-level differences in the experiences of everyday activities could be drawn out, seemingly attributable to the different diagnoses' differing dominant symptoms. These included people with posterior cortical atrophy being less likely to use environmental cues to initiate activities, and more likely to withhold from asking for support because of preserved insight into the impact of this on carers. This lack of initiation of activities could be misinterpreted as apathy. People with posterior cortical atrophy also were discouraged from engaging in activities by disorientation within the home, and difficulties localising, identifying and manipulating objects. People with the more common, memory-led presentation of Alzheimer's disease exhibited more memory-based difficulties with engaging with activities such as forgetting planned activities, where to locate the items required for an activity and the steps involved. Despite these distinct symptom-led challenges, all participants and their family members demonstrated resourcefulness and resilience in making creative adaptations to support continued engagement in everyday activities, supporting the widely reported management strategies of people with dementia of the Alzheimer's type more generally. Conclusions These findings offer helpful insights into some the differing impacts dementia related visual and memory impairments can have on everyday activity engagement, which will be helpful for others navigating these challenges and the health and social care practitioners working with people affected by these conditions. The findings also highlight the vast individual variation in the multitude of individual and contextual factors involved in everyday activity engagement, and suggest important areas for future work utilising methods which are similarly high in ecological validity and accessibility as the home-based focussed ethnographic methods utilised here

    Physics searches at the LHC

    Full text link
    With the LHC up and running, the focus of experimental and theoretical high energy physics will soon turn to an interpretation of LHC data in terms of the physics of electroweak symmetry breaking and the TeV scale. We present here a broad review of models for new TeV-scale physics and their LHC signatures. In addition, we discuss possible new physics signatures and describe how they can be linked to specific models of physics beyond the Standard Model. Finally, we illustrate how the LHC era could culminate in a detailed understanding of the underlying principles of TeV-scale physics.Comment: 184 pages, 55 figures, 14 tables, hundreds of references; scientific feedback is welcome and encouraged. v2: text, references and Overview Table added; feedback still welcom

    Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study.

    Get PDF
    BACKGROUND: The ongoing Ebola outbreak led to accelerated efforts to test vaccine candidates. On the basis of a request by WHO, we aimed to assess the safety and immunogenicity of the monovalent, recombinant, chimpanzee adenovirus type-3 vector-based Ebola Zaire vaccine (ChAd3-EBO-Z). METHODS: We did this randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a trial at the Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. Participants (aged 18-65 years) were randomly assigned (2:2:1), via two computer-generated randomisation lists for individuals potentially deployed in endemic areas and those not deployed, to receive a single intramuscular dose of high-dose vaccine (5 × 10(10) viral particles), low-dose vaccine (2·5 × 10(10) viral particles), or placebo. Deployed participants were allocated to only the vaccine groups. Group allocation was concealed from non-deployed participants, investigators, and outcome assessors. The safety evaluation was not masked for potentially deployed participants, who were therefore not included in the safety analysis for comparison between the vaccine doses and placebo, but were pooled with the non-deployed group to compare immunogenicity. The main objectives were safety and immunogenicity of ChAd3-EBO-Z. We did analysis by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02289027. FINDINGS: Between Oct 24, 2014, and June 22, 2015, we randomly assigned 120 participants, of whom 18 (15%) were potentially deployed and 102 (85%) were non-deployed, to receive high-dose vaccine (n=49), low-dose vaccine (n=51), or placebo (n=20). Participants were followed up for 6 months. No vaccine-related serious adverse events were reported. We recorded local adverse events in 30 (75%) of 40 participants in the high-dose group, 33 (79%) of 42 participants in the low-dose group, and five (25%) of 20 participants in the placebo group. Fatigue or malaise was the most common systemic adverse event, reported in 25 (62%) participants in the high-dose group, 25 (60%) participants in the low-dose group, and five (25%) participants in the placebo group, followed by headache, reported in 23 (57%), 25 (60%), and three (15%) participants, respectively. Fever occurred 24 h after injection in 12 (30%) participants in the high-dose group and 11 (26%) participants in the low-dose group versus one (5%) participant in the placebo group. Geometric mean concentrations of IgG antibodies against Ebola glycoprotein peaked on day 28 at 51 μg/mL (95% CI 41·1-63·3) in the high-dose group, 44·9 μg/mL (25·8-56·3) in the low-dose group, and 5·2 μg/mL (3·5-7·6) in the placebo group, with respective response rates of 96% (95% CI 85·7-99·5), 96% (86·5-99·5), and 5% (0·1-24·9). Geometric mean concentrations decreased by day 180 to 25·5 μg/mL (95% CI 20·6-31·5) in the high-dose group, 22·1 μg/mL (19·3-28·6) in the low-dose group, and 3·2 μg/mL (2·4-4·9) in the placebo group. 28 (57%) participants given high-dose vaccine and 31 (61%) participants given low-dose vaccine developed glycoprotein-specific CD4 cell responses, and 33 (67%) and 35 (69%), respectively, developed CD8 responses. INTERPRETATION: ChAd3-EBO-Z was safe and well tolerated, although mild to moderate systemic adverse events were common. A single dose was immunogenic in almost all vaccine recipients. Antibody responses were still significantly present at 6 months. There was no significant difference between doses for safety and immunogenicity outcomes. This acceptable safety profile provides a reliable basis to proceed with phase 2 and phase 3 efficacy trials in Africa. FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), through the EU Horizon 2020 Research and Innovation Programme

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore