72 research outputs found

    Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the pair production of heavy vector-like B quarks, primarily targeting B quark decays into a W boson and a top quark. The search is based on 36.1 fb −1 of pp collisions at √s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is b -tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the B mass is 1350 GeV assuming a 100% branching ratio to Wt. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying into other final states (Zb and Hb ) and thus mass limits on B production are set as a function of the decay branching ratios. The 100% branching ratio limits are found to be also applicable to heavy vector-like X production, with charge +5/3, that decay into Wt

    A search for tt̄ resonances using lepton-plus-jets events in proton-proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−¹ of proton-proton collision data collected at a centre-of-mass energy of √s=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b̄, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt̄. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV

    Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb −1 and was produced with a centre-of-mass energy of √s = 8 TeV. This analysis targets Q→Wb decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant tt̄ background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the Q→Wb cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR(T→Wb)=0.5, whereas the expected limit is 1.10 TeV

    Search for W W/W Z resonance production in ℓνqq final states in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is conducted for new resonances decaying into a W W or W Z boson pair, where one W boson decays leptonically and the other W or Z boson decays hadronically. It is based on proton-proton collision data with an integrated luminosity of 36.1 fb −1 collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of s=13 TeV in 2015 and 2016. The search is sensitive to diboson resonance production via vector-boson fusion as well as quark-antiquark annihilation and gluon-gluon fusion mechanisms. No significant excess of events is observed with respect to the Standard Model backgrounds. Several benchmark models are used to interpret the results. Limits on the production cross section are set for a new narrow scalar resonance, a new heavy vector-boson and a spin-2 Kaluza-Klein graviton.[Figure not available: see fulltext.]

    Mechanical stability of the CMS strip tracker measured with a laser alignment system

    Get PDF
    Peer reviewe

    Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in √s = 8 TeV pp collisions with the ATLAS detector

    Get PDF
    The results of a search for top squark (stop) pair production in final states with one isolated lepton, jets, and missing transverse momentum are reported. The analysis is performed with proton-proton collision data at s√ = 8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20 fb−1. The lightest supersymmetric particle (LSP) is taken to be the lightest neutralino which only interacts weakly and is assumed to be stable. The stop decay modes considered are those to a top quark and the LSP as well as to a bottom quark and the lightest chargino, where the chargino decays to the LSP by emitting a W boson. A wide range of scenarios with different mass splittings between the stop, the lightest neutralino and the lightest chargino are considered, including cases where the W bosons or the top quarks are off-shell. Decay modes involving the heavier charginos and neutralinos are addressed using a set of phenomenological models of supersymmetry. No significant excess over the Standard Model prediction is observed. A stop with a mass between 210 and 640 GeV decaying directly to a top quark and a massless LSP is excluded at 95% confidence level, and in models where the mass of the lightest chargino is twice that of the LSP, stops are excluded at 95% confidence level up to a mass of 500 GeV for an LSP mass in the range of 100 to 150 GeV. Stringent exclusion limits are also derived for all other stop decay modes considered, and model-independent upper limits are set on the visible cross-section for processes beyond the Standard Model

    Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at √s = 8 TeV

    Get PDF
    This paper reports a detailed study of techniques for identifying boosted, hadronically decaying W bosons using 20.3 fb −¹ of proton–proton collision data collected by the ATLAS detector at the LHC at a centre-of-mass energy √s = 8 TeV. A range of techniques for optimising the signal jet mass resolution are combined with various jet substructure variables. The results of these studies in Monte Carlo simulations show that a simple pairwise combination of groomed jet mass and one substructure variable can provide a 50 % efficiency for identifying W bosons with transverse momenta larger than 200 GeV while maintaining multijet background efficiencies of 2–4 % for jets with the same transverse momentum. These signal and background efficiencies are confirmed in data for a selection of tagging techniques

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Measurement of the charge asymmetry in highly boosted top-quark pair production in √s=8 TeV pp collision data collected by the ATLAS experiment

    Get PDF
    In the pp→tt process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb-1 of pp collision data at √s=8TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (mtt>0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within -2<|yt|-|yt|<2 is measured to be 4.2±3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three tt- mass bins is also presented
    corecore