266 research outputs found

    Producer Prices in 2015: Services Inflation Slows, Goods Prices Continue to Decrease

    Get PDF
    [Excerpt] The Producer Price Index (PPI) measures the average change over time in selling prices received by domestic producers for their output. The main PPI measure of inflation, the Final Demand- Intermediate Demand (FD-ID) System, measures final demand inflation (price changes for goods, services, and construction sold to consumers, capital investment, government, and export buyers) and intermediate demand inflation (price changes for goods, services, and construction sold to businesses as inputs to production, excluding sales of capital investment). This issue of Beyond the Numbers describes PPI price movements in 2015

    The Macronuclear Genome of \u3cem\u3eStentor coeruleus\u3c/em\u3e Reveals Tiny Introns in a Giant Cell

    Get PDF
    The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor’s cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor

    Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B11401, doi:10.1029/2003JB002949.Satellite gravity, ship track bathymetry, sediment thickness, and crustal magnetic age data were combined to calculate the residual bathymetry and residual mantle Bouguer gravity anomaly (RMBA) for the northwest Pacific Ocean. The Hawaii-Emperor hot spot track appears on the RMBA map as a chain of negative anomalies, implying thickened crust or less dense mantle. The hot spot swell is clearly visible in a broad band of half-width ∼500 km for about 2000 km downstream from the current hot spot location, corresponding to hot spot ages of 0–25 Ma. A much narrower expression of the hot spot is visible for the rest of the chain at hot spot ages of 25–80 Ma. Comparison of the observed RMBA with various compensation models reveals that the relatively narrow features of the Hawaii-Emperor seamounts are best explained as being supported by plate flexure, while the Shatsky Rise, Hess Rise, and Mid-Pacific Mountains oceanic plateaus are best fit by Airy isostasy with a thickened crustal root. Amplitude comparisons between the RMBA predictions of various compensation models and the observed RMBA for the Hawaiian swell are ambiguous. However, on the basis of the shape of the predicted anomalies, we favor a model of flexure in response to a buried load at 120 km depth. We further calculate igneous (i.e., crustal) volume flux along the axis of the Hawaii-Emperor hot spot by integrating cross-sectional areas of gravity-derived excess crustal thickness and seafloor elevation, respectively, with respect to the normal oceanic crust. The highest values of the calculated igneous volume flux along the Hawaiian and Emperor ridges (∼8 m3/s) occur at present and at about 20 Ma. The flux was reduced to only 50% of this maximum (∼4 m3/s) at 10 Ma. The calculated igneous volume flux is systematically smaller (maximum values of ∼4 m3/s) along the Emperor ridge. Overall, the Hawaiian and Emperor ridges appear to have experienced quasi-periodic variations in fluxes on timescales of 6–30 Ma. Furthermore, during the low-flux periods at 25–48, 57, and 75 Ma the height and size of individual hot spot seamounts appear to be noticeably less than those of the high-flux periods. We hypothesize that the variations in the fluxes of the Hawaiian ridge might be controlled by the thickness of the overlying lithosphere at the time of hot spot emplacement, while the variations along the Emperor ridge may be influenced by the dynamics of the slow absolute motion of the hot spot at the time.E. Van Ark was supported by a National Science Foundation Graduate Research Fellowship, and J. Lin was supported by NSF grant OCE-0129741 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI

    Macrophages retain hematopoietic stem cells in the spleen via VCAM-1

    Get PDF
    Splenic myelopoiesis provides a steady flow of leukocytes to inflamed tissues, and leukocytosis correlates with cardiovascular mortality. Yet regulation of hematopoietic stem cell (HSC) activity in the spleen is incompletely understood. Here, we show that red pulp vascular cell adhesion molecule 1 (VCAM-1)[superscript +] macrophages are essential to extramedullary myelopoiesis because these macrophages use the adhesion molecule VCAM-1 to retain HSCs in the spleen. Nanoparticle-enabled in vivo RNAi silencing of the receptor for macrophage colony stimulation factor (M-CSFR) blocked splenic macrophage maturation, reduced splenic VCAM-1 expression and compromised splenic HSC retention. Both, depleting macrophages in CD169 iDTR mice or silencing VCAM-1 in macrophages released HSCs from the spleen. When we silenced either VCAM-1 or M-CSFR in mice with myocardial infarction or in ApoE[superscript −/−] mice with atherosclerosis, nanoparticle-enabled in vivo RNAi mitigated blood leukocytosis, limited inflammation in the ischemic heart, and reduced myeloid cell numbers in atherosclerotic plaques

    Bacterial Heat-Stable Enterotoxins: Translation of Pathogenic Peptides into Novel Targeted Diagnostics and Therapeutics

    Get PDF
    Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer

    Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform

    Get PDF
    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~ 30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

    Bioinspired approaches for toughening of fibre reinforced polymer composites

    Get PDF
    In Nature, there are a large range of tough, strong, lightweight and multifunctional structures that can be an inspiration to better performingmaterials. Thiswork presents a review of structures found in Nature, frombiological ceramics and ceramics composites, biological polymers and polymers composites, biological cellular materials, biological elastomers to functional biological materials, and their main tougheningmechanisms, envisaging potential mimicking approaches that can be applied in advanced continuous fibre reinforced polymer (FRP) composite structures. For this, themost common engineering compositemanufacturing processes and current composite damage mitigation approaches are analysed. This aims at establishing the constraints of biomimetic approaches development as these bioinspired structures are to be manufactured by composite technologies. Combining both Nature approaches and engineering composites developments is a route for the design and manufacturing of high mechanical performance and multifunctional composite structures, therefore new bioinspired solutions are proposed.This research was funded by the project “IAMAT—Introduction of advanced materials technologies into new product development for the mobility industries”, with reference MITP-TB/PFM/0005/2013, under the MIT-Portugal program and in the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, exclusively financed by FCT - Fundação para a Ciência e Tecnologia

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    corecore