985 research outputs found

    Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase

    Full text link
    Understanding how nanostructure and nanomechanics influence physical material properties on the micro- and macroscale is an essential goal in soft condensed matter research. Mechanisms governing fragmentation and chirality inversion of filamentous colloids are of specific interest because of their critical role in load-bearing and self-organizing functionalities of soft nanomaterials. Here we provide a fundamental insight into the self-organization across several length scales of nanocellulose, an important bio-colloid system with wide-ranging applications as structural, insulating and functional material. Through a combined microscopic and statistical analysis of nanocellulose fibrils at the single particle level, we show how mechanically and chemically induced fragmentation proceed in this system. Moreover, by studying the bottom-up self-assembly of fragmented carboxylated cellulose nanofibrils into cholesteric liquid crystals, we show via direct microscopic observations, that the chirality is inverted from right-handed at the nanofibril level to left-handed at the level of the liquid crystal phase. These results improve our fundamental understanding of nanocellulose and provide an important rationale for their application in colloidal systems, liquid crystals and nanomaterials

    Modulating self-assembly of a nanotape-forming peptide amphiphile with an oppositely charged surfactant

    Get PDF
    A peptide amphiphile (PA) C16-KTTKS, containing a pentapeptide headgroup based on a sequence from procollagen I attached to a hexadecyl lipid chain, self-assembles into extended nanotapes in aqueous solution. The tapes are based on bilayer structures, with a 5.2 nm spacing. Here, we investigate the effect of addition of the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS) via AFM, electron microscopic methods, small-angle X-ray scattering and X-ray diffraction among other methods. We show that addition of SDS leads to a transition from tapes to fibrils, via intermediate states that include twisted ribbons. Addition of SDS is also shown to enhance the development of remarkable lateral ‘‘stripes’’ on the nanostructures, which have a 4 nm periodicity. This is ascribed to counterion condensation. The transition in the nanostructure leads to changes in macroscopic properties, in particular a transition from sol to gel is noted on increasing SDS (with a further reentrant transition to sol on further increase of SDS concentration). Formation of a gel may be useful in applications of this PA in skincare applications and we show that this can be controlled via development of a network of fine stranded fibrils

    Hybrid protein membranes: Snatch contaminants from water and strike gold

    Get PDF
    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films. Please click Additional Files below to see the full abstract

    Thermo-mechanical properties of hyperbranched polymer modified epoxies

    Get PDF
    The thermo-mechanical properties of hyperbranched polymer-epoxy blends and their dependence on hyperbranched polymer shell chemistry were investigated. Hyperbranched polymers were shown to be able to increase resin toughness by inducing both a heterogeneous and homogeneous morphology. While the former was better performing in terms of toughness, the latter showed satisfactory toughness together with complete transparency. In order to understand fracture toughness enhancement, toughening mechanisms as well as the properties of both matrix and particles were studied. Particle composition was derived by combining dynamic mechanical analysis and the Fox equation. This resulted in an evaluation not only of particle composition but also of glass transition temperature and stiffness, whose value was cross-checked by a micro-mechanical model. The complete picture concerning particle and matrix properties, as well as toughening mechanisms and their dependence on hyperbranched polymer shell chemistry, finally enabled defining the optimum molecular design of the hyperbranched polymers in order to achieve the desired fracture toughnes

    Challenges and opportunities from water under soft nanoconfinement

    Get PDF
    Nanoconfined water differs significantly from bulk water and challenges our common understanding of liquid water in both its most fundamental features, as well as in many applied aspects which stem out from its peculiar behavior. This brief perspective pinpoints both challenges associated with the study of water under soft nanoconfinement as well as some opportunities which arise from it, and which would not be at reach with standard bulk water. A special focus is given to the strong nanoconfinement (∌1–10 nm) offered by inverse lipidic mesophases, viewed as a natural soft nanoconfinement environment for water

    Flow-induced order-order transitions in amyloid fibril liquid crystalline tactoids

    Full text link
    Understanding and controlling the director field configuration, shape, and orientation in nematic and cholesteric liquid crystals is of fundamental importance in several branches of science. Liquid crystalline droplets, also known as tactoids, which spontaneously form by nucleation and growth within the biphasic region of the phase diagram where isotropic and nematic phases coexist, challenge our current understanding of liquid crystals under confinement, due to the influence of anisotropic surface boundaries at vanishingly small interfacial tension and are mostly studied under quiescent, quasi-equilibrium conditions. Here, we show that different classes of amyloid fibril nematic and cholesteric tactoids undergo out-of-equilibrium order-order transitions by flow-induced deformations of their shape. The tactoids align under extensional flow and undergo extreme deformation into highly elongated oblate shapes, allowing the cholesteric pitch to decrease as an inverse power law of the tactoids aspect ratio. Energy functional theory and experimental measurements are combined to rationalize the critical elongation ratio above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions. Our findings suggest new opportunities in designing self-assembled liquid crystalline materials where structural and dynamical properties may be tuned by non-equilibrium phase transitions

    Interfacial activity and interfacial shear rheology of native ß-lactoglobulin monomers and their heat-induced fibers

    Get PDF
    Interfacial properties of native ÎČ-lactoglobulin monomers and their heat-induced fibers, of two different lengths, were investigated at pH 2, through surface tension measurements at water−air and water−oil interfaces and interfacial shear rheology at the water−oil interface. The applied heat treatment generates a mixed system of fibers with unconverted monomers and hydrolyzed peptides. The surface tension of this system at the water−air interface decreased more rapidly than the surface tension of native monomers, especially at short times (10⁻³ to 10ÂČs). This behavior was not observed when the unconverted monomers and peptides were removed by dialysis. At the water−oil interface, the adsorption kinetics was much faster than at the water−air interface, with a plateau interfacial pressure value reached after 1 h of adsorption. For all the systems, interfacial shear rheology showed the formation of a highly elastic interface, with solid-like behavior at 1−10Âł s time scales. The highest modulus was observed for the long fibers and the lowest for the native monomers. Creep−compliance curves in the linear regime could be reduced to a single master curve, showing similar spectra of relaxation times for all investigated systems. Upon large deformations, the interfaces formed with long fibers showed the most rigid and fragile behavior. This rigidity was even more pronounced in the presence of unconverted monomers

    Self-assembly of rod-coil block copolymers from weakly to moderately segregated regimes

    Get PDF
    Abstract.: We report on the self-assembly behaviour of two homologue series of rod-coil block copolymers in which, the rod, a π -conjugated polymer, is maintained fixed in size and chemical structure, while the coil is allowed to vary both in molecular weight and chemical nature. This allows maintaining constant the liquid crystalline interactions, expressed by Maier-Saupe interactions, ω , while varying the tendency towards microphase separation, expressed by the product between the Flory-Huggins parameter and the total polymerization degree, χN . Therefore, the systems presented here allow testing directly some of the theoretical predictions for the self-assembly of rod-coil block copolymers in a weakly segregated regime. The two rod-coil block copolymer systems investigated were poly(DEH-p-phenylenevinylene-b-styrene), whose self-assembly takes place in the very weakly segregated regime, and poly(DEH-p-phenylenevinylene-b-4vinylpyridine), for which the self-assembly behaviour occurs under increased tendency towards microphase separation, hereby referred to as moderately segregated regime. Experimental results for both systems are compared with predictions based on Landau expansion theorie

    Self-assembly of rod-coil block copolymers from weakly to moderately segregated regimes

    Get PDF
    We report on the self-assembly behaviour of two homologue series of rod-coil block copolymers in which, the rod, a π -conjugated polymer, is maintained fixed in size and chemical structure, while the coil is allowed to vary both in molecular weight and chemical nature. This allows maintaining constant the liquid crystalline interactions, expressed by Maier-Saupe interactions, ω , while varying the tendency towards microphase separation, expressed by the product between the Flory-Huggins parameter and the total polymerization degree, χN . Therefore, the systems presented here allow testing directly some of the theoretical predictions for the self- assembly of rod-coil block copolymers in a weakly segregated regime. The two rod- coil block copolymer systems investigated were poly(DEH-p-phenylenevinylene-b- styrene), whose self-assembly takes place in the very weakly segregated regime, and poly(DEH-p-phenylenevinylene-b-4vinylpyridine), for which the self-assembly behaviour occurs under increased tendency towards microphase separation, hereby referred to as moderately segregated regime. Experimental results for both systems are compared with predictions based on Landau expansion theories
    • 

    corecore