2,283 research outputs found

    Interpretation of the prominence differential emissions measure for 3 geometries

    Get PDF
    Researchers have used prominence extreme ultraviolet line intensities observed from Skylab to derive the differential emission measure Q(T) in the prominence-corona (PC) interface from 3 x 10,000 to 3 times 1 million K, including the effects of Lyman Continuum absorption. Using lines both shortward and longward of the Lyman limit, researchers have estimated the importance of absorption as function of temperature. The magnitude of the absorption, as well as its rate of increase as a function of temperature, place limits on the thread scales and the character of the interfilar medium. Researchers have calculated models based on three assumed geometries: (1) threads with hot sheaths and cool cores; (2) isothermal threads; and (3) threads with longitudinal temperature gradients along the magnetic field. Comparison of the absorption computed from these models with the observed absorption in prominences shows that none of the geometries is totally satisfactory

    Deep reef fish surveys by submersible on Alderdice, McGrail, and Sonnier Banks in the Northwestern Gulf of Mexico

    Get PDF
    Submersible surveys at numerous reefs and banks in the northwestern Gulf of Mexico (NWGOM) were conducted as part of the Sustainable Seas Expedition (SSE) during July/August 2002 to identify reef fish communities, characterize benthic habitats, and identify deep coral reef ecosystems. To identify the spatial extent of hard bottom reef communities, the Flower Garden Banks National Marine Sanctuary (FGBNMS) and the U.S. Geological Survey (USGS) mapped approximately 2000 km2 of the Northwestern Gulf of Mexico (NWGOM) continental shelf during June 2002 with high-resolution multibeam bathymetry. Previous investigations conducted on the features of interest (with the exceptions of East and West Flower Garden and Sonnier Banks, accessible by SCUBA) had not been conducted since the 1970s and 1980s, and did not have the use of high-resolution maps to target survey sites. The base maps were instrumental in navigating submersibles to specific features at each study site during the Sustainable Seas Expedition (SSE)—a submersible effort culminating from a partnership between the National Atmospheric and Oceanic Administration (NOAA) and the National Geographic Society (NGS). We report the initial findings of our submersible surveys, including habitat and reef fish diversity at McGrail, Alderdice, and Sonnier Banks. A total of 120 species and 40,724 individuals were identified from video surveys at the three banks. Planktivorous fishes constituted over 87% by number for the three banks, ranging from 81.4% at Sonnier Banks to 94.3% at Alderdice Bank, indicating a direct link to pelagic prey communities, particularly in the deep reef zones. High numbers of groupers, snappers, jacks, and other fishery species were observed on all three features. These sites were nominated as Habitat Areas of Particular Concern (HAPC) by the Gulf of Mexico Fishery Council in March 2004. Data obtained during this project will contribute to benthic habitat characterization and assessment of the associated fish communities through future SCUBA, ROV, and submersible missions, and allow comparisons to other deep reef ecosystems found throughout the Gulf of Mexico and western Atlantic Ocean

    Topics in Persistent Homology: From Morse Theory for Minimal Surfaces to Efficient Computation of Image Persistence

    Get PDF
    We study some problems and develop some theory related to persistent homology, separated into two lines of investigation. In the first part, we introduce lifespan functors, which are endofunctors on the category of persistence modules that filter out intervals from barcodes according to their boundedness properties. They can be used to classify injective and projective objects in the category of barcodes and the category of pointwise finite-dimensional persistence modules. They also naturally appear in duality results for absolute and relative versions of persistent (co)homology, generalizing previous results in terms of barcodes by de Silva, Morozov, and Vejdemo-Johansson. Due to their functoriality, we can apply these results to morphisms in persistent homology that are induced by morphisms between filtrations. This lays the groundwork for an efficient algorithm to compute barcodes of images and induced matchings of such morphisms, which performs computations in terms of relative cohomology and then translates to absolute homology via the aforementioned dualities. Our method is based on a previous algorithm by Cohen-Steiner, Edelsbrunner, Harer, and Morozov that did not make use of relative cohomology. Using it is crucial, however, because our algorithm applies the clearing optimization introduced by Chen and Kerber, which works particularly well in the context of relative cohomology. We provide an implementation of our algorithm for inclusions of filtrations of Vietoris–Rips complexes in the framework of the software Ripser by Ulrich Bauer. In the second part, we introduce local connectedness conditions on a broad class of functionals that ensure that the persistent homology of their associated sublevel set filtration is q-tame, which, in particular, implies that they satisfy generalized Morse inequalities. We illustrate the applicability of these results by recasting the original proof of the unstable minimal surface theorem given by Morse and Tompkins in terms of persistent Čech homology in a modern and rigorous framework. Moreover, we show that the interleaving distance between the persistent singular homology and the persistent Čech homology of a filtration consisting of paracompact Hausdorff spaces is 0 if it satisfies a similar local connectedness condition to the one used to ensure q-tameness, generalizing a result by Mardešić for locally connected spaces to the setting of filtrations. In contrast to singular homology, the persistent Čech homology of a compact filtration is always upper semi-continuous, which has structural implications in the q-tame case: using a result by Chazal, Crawley-Boevey, and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed as a product of interval modules

    Structure of Semi-Continuous Q-Tame Persistence Modules

    Full text link
    Using a result by Chazal, Crawley-Boevey and de Silva concerning radicals of persistence modules, we show that every lower semi-continuous q-tame persistence module can be decomposed as a direct sum of interval modules and that every upper semi-continuous q-tame persistence module can be decomposed as a product of interval modules.Comment: 11 page

    Meterwave observations of a coronal hole

    Get PDF
    Meter-wave maps are presented showing a coronal hole at 30.9, 50.0, and 73.8 MHz using the Clark Lake Radioheliograph in October 1984. The coronal hole seen against the disk at all three frequencies shows interesting similarities to, and significant differences from its optical signatures in HeI lambda10830 spectroheliograms. The 73.8 MHz coronal hole, when seen near disk center, appears to coincide with the HeI footprint of the hole. At the lower frequencies, the emission comes from higher levels of the corona, and the hole appears to be displaced, probably due to the non-radial structure of the coronal hole. The contrast of the hole relative to the quiet Sun is much greater than reported previously for a coronal hole observed at 80 MHz. The higher contrast is certainly real, due to the superior dynamic range, sensitivity, and calibration of the Clark Lake instrument. Using a coronal hole model, the electron density is derived from radio observations of the brightness temperature. A very large discrepancy is found between the derived density and that determined from Skylab EUV observations of coronal holes. This discrepancy suggests that much of the physics of coronal holes has yet to be elucidated

    Plasma heating in the very early phase of solar flares

    Full text link
    In this paper we analyze soft and hard X-ray emission of the 2002 September 20 M1.8 GOES class solar flare observed by RHESSI and GOES satellites. In this flare event, soft X-ray emission precedes the onset of the main bulk hard X-ray emission by ~5 min. This suggests that an additional heating mechanism may be at work at the early beginning of the flare. However RHESSI spectra indicate presence of the non-thermal electrons also before impulsive phase. So, we assumed that a dominant energy transport mechanism during rise phase of solar flares is electron beam-driven evaporation. We used non-thermal electron beams derived from RHESSI spectra as the heating source in a hydrodynamic model of the analyzed flare. We showed that energy delivered by non-thermal electron beams is sufficient to heat the flare loop to temperatures in which it emits soft X-ray closely following the GOES 1-8 A light-curve. We also analyze the number of non-thermal electrons, the low energy cut-off, electron spectral indices and the changes of these parameters with time.Comment: Comments: 17 pages, 5 figures, The Astrophysical Journal Letters (accepted, October 2009

    An Examination of Whether Grit, Belonging and Institutional Compassion Contribute to Emerging Adult Goal Pursuits and Reduce Pandemic-Related Stress

    Get PDF
    ABSTRACTAN EXAMINATION OF WHETHER GRIT, BELONGING AND INSTITUTIONAL COMPASSION CONTRIBUTE TO EMERGING ADULT GOAL PURSUITS AND REDUCE PANDEMIC-RELATED STRESS by Cynthia A. M. Schmahl The University of Wisconsin-Milwaukee, May 2021Under the Supervision of Professor Jacqueline Nguyen, Ph.D. This dissertation examines the merits of grit and belonging for emerging adults’ collegiate goal pursuits and the influence of institutional compassion amid COVID-19 challenges and stress. Participants were traditional full-time, undergraduate students ages 18-24, recruited from a national sample using Qualtrics, an online survey tool (N = 258; 60% women; 47.31% White, 18.46% Black/African American, 17.31% Asian, 10.77% Hispanic/Latino/a/x). Participants completed a survey including two measures developed for this study—institutional compassion and goal progress—and measures of grit, belonging, and pandemic-related stress.Grit and sense of belonging predicted goal progress. Grit subscales had differentiated results—adaptability to situations and perseverance of effort predicted goal progress; consistency of interest did not. Independently, sense of belonging was a stronger predictor of goal progress than grit. Participants with weaker sense of belonging exhibited more pandemic-related stress; participants higher in grit had lower pandemic-related stress overall. Institutional compassion strongly associated with grit, sense of belonging, and stress; in particular, as institutional compassion increased, sense of belonging increased, and pandemic-related stress decreased. Grit, belonging, and institutional compassion are important to students’ perceptions of goal progress and stress. Keywords: belonging, grit, goal pursuits, institutional compassion, pandemic stres
    • …
    corecore