224 research outputs found

    Optimizing Taq Polymerase Concentration for Improved Signal-to-Noise in the Broad Range Detection of Low Abundance Bacteria

    Get PDF
    BACKGROUND:PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical. METHODOLOGY/PRINCIPAL FINDINGS:This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H(2)O) while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase. CONCLUSIONS/SIGNIFICANCE:It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved "treatment-free" attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one) in a sample

    An Efficient Strategy for Broad-Range Detection of Low Abundance Bacteria without DNA Decontamination of PCR Reagents

    Get PDF
    BACKGROUND: Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. METHODOLOGY/PRINCIPAL FINDINGS: We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3'-end complementary to the template bacterial sequence and a 5'-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10-100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. CONCLUSIONS/SIGNIFICANCE: Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories

    Reduction of Mitoferrin Results in Abnormal Development and Extended Lifespan in Caenorhabditis elegans

    Get PDF
    Iron is essential for organisms. It is mainly utilized in mitochondria for biosynthesis of iron-sulfur clusters, hemes and other cofactors. Mitoferrin 1 and mitoferrin 2, two homologues proteins belonging to the mitochondrial solute carrier family, are required for iron delivery into mitochondria. Mitoferrin 1 is highly expressed in developing erythrocytes which consume a large amount of iron during hemoglobinization. Mitoferrin 2 is ubiquitously expressed, whose functions are less known. Zebrafish with mitoferrin 1 mutation show profound hypochromic anaemia and erythroid maturation arrests, and yeast with defects in MRS3/4, the counterparts of mitoferrin 1/2, has low mitochondrial iron levels and grows poorly by iron depletion. Mitoferrin 1 expression is up-regulated in yeast and mouse models of Fiedreich's ataxia disease and in human cell culture models of Parkinson disease, suggesting its involvement in the pathogenesis of diseases with mitochondrial iron accumulation. In this study we found that reduced mitoferrin levels in C. elegans by RNAi treatment causes pleiotropic phenotypes such as small body size, reduced fecundity, slow movement and increased sensitivity to paraquat. Despite these abnormities, lifespan was increased by 50% to 80% in N2 wild type strain, and in further studies using the RNAi sensitive strain eri-1, more than doubled lifespan was observed. The pathways or mechanisms responsible for the lifespan extension and other phenotypes of mitoferrin RNAi worms are worth further study, which may contribute to our understanding of aging mechanisms and the pathogenesis of iron disorder related diseases

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription

    Get PDF
    Expression of viral proteins causes important epigenetic changes leading to abnormal cell growth. Whether viral proteins directly target histone methyltransferases (HMTs), a key family enzyme for epigenetic regulation, and modulate their enzymatic activities remains elusive. Here we show that the E6 proteins of both low-risk and high-risk human papillomavirus (HPV) interact with three coactivator HMTs, CARM1, PRMT1 and SET7, and downregulate their enzymatic activities in vitro and in HPV-transformed HeLa cells. Furthermore, these three HMTs are required for E6 to attenuate p53 transactivation function. Mechanistically, E6 hampers CARM1- and PRMT1-catalyzed histone methylation at p53-responsive promoters, and suppresses the binding of p53 to chromatinized DNA independently of E6-mediated p53 degradation. p53 pre-methylated at lysine-372 (p53K372 mono-methylation) by SET7 protects p53 from E6-induced degradation. Consistently, E6 downregulates p53K372 mono-methylation and thus reduces p53 protein stability. As a result of the E6-mediated inhibition of HMT activity, expression of p53 downstream genes is suppressed. Together, our results not only reveal a clever approach for the virus to interfere with p53 function, but also demonstrate the modulation of HMT activity as a novel mechanism of epigenetic regulation by a viral oncoprotein

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore