88 research outputs found

    Determination of Membrane Protein Transporter Oligomerization in Native Tissue Using Spatial Fluorescence Intensity Fluctuation Analysis

    Get PDF
    Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state

    Expression of TRPC6 channels in human epithelial breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TRP channels have been shown to be involved in tumour generation and malignant growth. However, the expression of these channels in breast cancer remains unclear. Here we studied the expression and function of endogenous TRPC6 channels in a breast cancer cell line (MCF-7), a human breast cancer epithelial primary culture (hBCE) and in normal and tumour breast tissues.</p> <p>Methods</p> <p>Molecular (Western blot and RT-PCR), and immunohistochemical techniques were used to investigate TRPC6 expression. To investigate the channel activity in both MCF-7 cells and hBCE we used electrophysiological technique (whole cell patch clamp configuration).</p> <p>Results</p> <p>A non selective cationic current was activated by the oleoyl-2-acetyl-sn-glycerol (OAG) in both hBCE and MCF-7 cells. OAG-inward current was inhibited by 2-APB, SK&F 96365 and La<sup>3+</sup>. TRPC6, but not TRPC7, was expressed both in hBCE and in MCF-7 cells. TRPC3 was only expressed in hBCE. Clinically, TRPC6 mRNA and protein were elevated in breast carcinoma specimens in comparison to normal breast tissue. Furthermore, we found that the overexpression of TRPC6 protein levels were not correlated with tumour grades, estrogen receptor expression or lymph node positive tumours.</p> <p>Conclusion</p> <p>Our results indicate that TRPC6 channels are strongly expressed and functional in breast cancer epithelial cells. Moreover, the overexpression of these channels appears without any correlation with tumour grade, ER expression and lymph node metastasis. Our findings support the idea that TRPC6 may have a role in breast carcinogenesis.</p

    Enhancing Electron Coherence via Quantum Phonon Confinement in Atomically Thin Nb3SiTe6

    Get PDF
    The extraordinary properties of two dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in transition metal dichalcogenides MX2 (M = Mo or W, X = S, Se) monolayers, highlight the crucial role quantum confinement can have in producing a wide spectrum of technologically important electronic properties. Currently one of the highest priorities in the field is to search for new 2D crystalline systems with structural and electronic properties that can be exploited for device development. In this letter, we report on the unusual quantum transport properties of the 2D ternary transition metal chalcogenide - Nb3SiTe6. We show that the micaceous nature of Nb3SiTe6 allows it to be thinned down to one-unit-cell thick 2D crystals using microexfoliation technique. When the thickness of Nb3SiTe6 crystal is reduced below a few unit-cells thickness, we observed an unexpected, enhanced weak-antilocalization signature in magnetotransport. This finding provides solid evidence for the long-predicted suppression of electron-phonon interaction caused by the crossover of phonon spectrum from 3D to 2D.Comment: Accepted by Nature Physic

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Measurement of b hadron lifetimes in exclusive decays containing a J/psi in p-pbar collisions at sqrt(s)=1.96TeV

    Get PDF
    We report on a measurement of bb-hadron lifetimes in the fully reconstructed decay modes B^+ -->J/Psi K+, B^0 --> J/Psi K*, B^0 --> J/Psi Ks, and Lambda_b --> J/Psi Lambda using data corresponding to an integrated luminosity of 4.3 fb1{\rm fb}^{-1}, collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are τ\tauB^+ = 1.639±0.009(stat)±0.009(syst) ps1.639 \pm 0.009 ({\rm stat}) \pm 0.009 {\rm (syst) ~ ps}, τ\tauB^0 = 1.507±0.010(stat)±0.008(syst) ps1.507 \pm 0.010 ({\rm stat}) \pm 0.008 {\rm (syst) ~ ps} and τ\tauLambda_b = 1.537±0.045(stat)±0.014(syst) ps1.537 \pm 0.045 ({\rm stat}) \pm 0.014 {\rm (syst) ~ ps}. The lifetime ratios are τ\tauB^+/τ\tauB^0 = 1.088±0.009(stat)±0.004(syst)1.088 \pm 0.009 ({\rm stat})\pm 0.004 ({\rm syst}) and τ\tauLambda_b/τ\tauB^0 = 1.020±0.030(stat)±0.008(syst)1.020 \pm 0.030 ({\rm stat})\pm 0.008 ({\rm syst}). These are the most precise determinations of these quantities from a single experiment.Comment: revised version. accepted for PRL publicatio

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of 102Mc2{10}^{-2}{M}_{\odot }{c}^{2} were emitted within the 1616500500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 5454 Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle 30\leqslant 30^\circ , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively
    corecore