461 research outputs found

    Editorial: Mitochondrial dysfunction and cardiovascular diseases

    Get PDF
    A deeper understanding of the molecular mechanisms underlying the development and progression of cardiovascular diseases represents a major goal in cardiovascular medicine. Mitochondrial dysfunction has emerged as major player in the development of cardiovascular diseases, with potential therapeutic implications. Mitochondrial dysfunction encompasses mitochondrial complex disruption, mitochondrial uncoupling, and cristae remodeling and swelling, which in turn cause ROS accumulation, energy stress, and cell death

    Lats2 promotes heart failure by stimulating p53-mediated apoptosis during pressure overload

    Get PDF
    The Hippo pathway plays a wide variety of roles in response to stress in the heart. Lats2, a component of the Hippo pathway, is phosphorylated by Mst1/2 and, in turn, phosphorylates YAP, causing inactivation of YAP. Lats2 stimulates apoptosis and negatively affects hypertrophy in cardiomyocytes. However, the role of Lats2 during cardiac stress is poorly understood in vivo. Lats2 is activated in the mouse heart in response to transverse aortic constriction (TAC). We used systemic Lats2 +/- mice to elucidate the role of endogenous Lats2. Cardiac hypertrophy and dysfunction induced by 4 weeks of TAC were attenuated in Lats2 +/- mice, and interstitial fibrosis and apoptosis were suppressed. Although TAC upregulated the Bcl-2 family proapoptotic (Bax and Bak) and anti-apoptotic (Bcl-2 and Bcl-xL) molecules in non-transgenic mice, TAC-induced upregulation of Bax and Bak was alleviated and that of Bcl-2 was enhanced in Lats2 +/- mice. TAC upregulated p53, but this upregulation was abolished in Lats2 +/- mice. Lats2-induced increases in apoptosis and decreases in survival in cardiomyocytes were inhibited by Pifithrin-α, a p53 inhibitor, suggesting that Lats2 stimulates apoptosis via a p53-dependent mechanism. In summary, Lats2 is activated by pressure overload, thereby promoting heart failure by stimulating p53-dependent mechanisms of cell death

    Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle

    Get PDF
    Kawabe, J; Okumura, S; Lee, MC; Sadoshima, J; Ishikawa, Y, AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 286(5), H1845-H1852, 2004. "Copyright 2004 by the American Physical Society." publisherMechanical stress contributes to vascular disease related to hypertension. Activation of ERK is key to mediating cellular proliferation and vascular remodeling in response to stretch stress. However, the mechanism by which stretch mediates ERK activation in the vascular tissue is still unclear. Caveolin, a major component of a flasklike invaginated caveolae, acts as an adaptor protein for an integrin-mediated signaling pathway. We found that cyclic stretch transiently induced translocation of caveolin from caveolae to noncaveolar membrane sites in vascular smooth muscle cells (VSMCs). This translocation of caveolin was determined by detergent solubility, sucrose gradient fractionation, and immunocytochemistry. Cyclic stretch induced ERK activation; the activity peaked at 5 min (the early phase), decreased gradually, but persisted up to 120 min (the late phase). Disruption of caveolae by methyl-β-cyclodextrin, decreasing the caveolar caveolin and accumulating the noncaveolar caveolin, enhanced ERK activation in both the early and late phases. When endogenous caveolins were downregulated, however, the late-phase ERK activation was subsided completely. Caveolin, which was translocated to noncaveolar sites in response to stretch, is associated with β_1-integrins as well as with Fyn and Shc, components required for ERK activation. Taken together, caveolin in caveolae may keep ERK inactive, but when caveolin is translocated to noncaveolar sites in response to stretch stress, caveolin mediates stretch-induced ERK activation through an association with β_1-integrins/Fyn/Shc. We suggest that stretch-induced translocation of caveolin to noncaveolar sites plays an important role in mediating stretch-induced ERK activation in VSMCs

    Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome

    Get PDF
    BACKGROUND: Rheb is a GTP-binding protein that promotes cell survival and mediates the cellular response to energy deprivation (ED). The role of Rheb in the regulation of cell survival during ED has not been investigated in the heart. METHODS AND RESULTS: Rheb is inactivated during cardiomyocyte (CM) glucose deprivation (GD) in vitro, and during acute myocardial ischemia in vivo. Rheb inhibition causes mTORC1 inhibition, because forced activation of Rheb, through Rheb overexpression in vitro and through inducible cardiac-specific Rheb overexpression in vivo, restored mTORC1 activity. Restoration of mTORC1 activity reduced CM survival during GD and increased infarct size after ischemia, both of which were accompanied by inhibition of autophagy, whereas Rheb knockdown increased autophagy and CM survival. Rheb inhibits autophagy mostly through Atg7 depletion. Restoration of autophagy, through Atg7 reexpression and inhibition of mTORC1, increased cellular ATP content and reduced endoplasmic reticulum stress, thereby reducing CM death induced by Rheb activation. Mice with high-fat diet-induced obesity and metabolic syndrome (HFD mice) exhibited deregulated cardiac activation of Rheb and mTORC1, particularly during ischemia. HFD mice presented inhibition of cardiac autophagy and displayed increased ischemic injury. Pharmacological and genetic inhibition of mTORC1 restored autophagy and abrogated the increase in infarct size observed in HFD mice, but they failed to protect HFD mice in the presence of genetic disruption of autophagy. CONCLUSIONS: Inactivation of Rheb protects CMs during ED through activation of autophagy. Rheb and mTORC1 may represent therapeutic targets to reduce myocardial damage during ischemia, particularly in obese patient

    Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance

    Get PDF
    Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Dietary spermidine for lowering high blood pressure

    Get PDF
    Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular- protective autophagy inducer that can be readily integrated in common diets

    Genetics of Mechanosensation in the Heart

    Get PDF
    Mechanosensation (the ultimate conversion of a mechanical stimulus into a biochemical signal) as well as mechanotransduction (transmission of mechanically induced signals) belong to the most fundamental processes in biology. These effects, because of their dynamic nature, are particularly important for the cardiovascular system. Therefore, it is not surprising that defects in cardiac mechanosensation, are associated with various types of cardiomyopathy and heart failure. However, our current knowledge regarding the genetic basis of impaired mechanosensation in the cardiovascular system is beginning to shed light on this subject and is at the centre of this brief review

    Association of angiotensin-converting enzyme inhibitor therapy and comorbidity in diabetes: results from the Vermont diabetes information system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiotensin converting enzyme inhibitors (ACE inhibitors) reduce peripheral vascular resistance via blockage of angiotensin converting enzyme (ACE). ACE inhibitors are commonly used to treat congestive heart failure and high blood pressure, but other effects have been reported. In this study, we explored the association between ACE inhibitor therapy and the prevalence of comorbid conditions in adults with diabetes</p> <p>Methods</p> <p>We surveyed 1003 adults with diabetes randomly selected from community practices. Patients were interviewed at home and self-reported their personal and clinical characteristics including comorbidity. Current medications were obtained by direct observation of medication containers. We built logistic regression models with the history of comorbidities as the outcome variable and the current use of ACE inhibitors as the primary predictor variable. We adjusted for possible confounding by social (age, sex, alcohol drinking, cigarette smoking) and clinical factors (systolic blood pressure, body mass index (BMI), glycosolated hemoglobin (A1C), number of comorbid conditions, and number of prescription medications).</p> <p>Results</p> <p>ACE users reported a history of any cancer (except the non-life-threatening skin cancers) less frequently than non-users (10% <it>vs</it>. 15%; odd ratio = 0.59; 95% confidence interval [0.39, 0.89]; <it>P </it>= 0.01); and a history of stomach ulcers or peptic ulcer disease less frequently than non-users (12% <it>vs</it>. 16%, odd ratio = 0.70, [0.49, 1.01], <it>P </it>= 0.06). After correcting for potential confounders, ACE inhibitors remained significantly inversely associated with a personal history of cancer (odds ratio = 0.59, [0.39, 0.89]; <it>P </it>= 0.01) and peptic ulcer disease (odd ratio = 0.68, [0.46, 1.00], <it>P </it>= 0.05).</p> <p>Conclusion</p> <p>ACE inhibitor use is associated with a lower likelihood of a history of cancer and peptic ulcers in patients with diabetes. These findings are limited by the cross sectional study design, self-report of comorbid diagnoses, and lack of information on the timing and duration of ACE inhibitor use. Further research is needed to confirm these associations and understand their mechanisms.</p

    Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca<sup>2+</sup>] ([Ca<sup>2+</sup>]<sub>i</sub>) is a prerequisite for NFAT nuclear translocation. Elevated [Ca<sup>2+</sup>]<sub>i </sub>in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca<sup>2+ </sup>channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca<sup>2+ </sup>influx and increase in [Ca<sup>2+</sup>]<sub>i </sub>is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca<sup>2+</sup>]<sub>i </sub>leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca<sup>2+</sup>/NFAT pathway.</p> <p>Methods</p> <p>Human PASMC were cultured under hypoxia (3% O<sub>2</sub>) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca<sup>2+</sup>]<sub>i </sub>was measured with a dynamic digital Ca<sup>2+ </sup>imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.</p> <p>Results</p> <p>Hypoxia induced PASMC proliferation with increases in basal [Ca<sup>2+</sup>]<sub>i </sub>and Ca<sup>2+ </sup>entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca<sup>2+</sup>]<sub>i</sub>, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.</p> <p>Conclusion</p> <p>The SOC/Ca<sup>2+</sup>/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.</p
    corecore